高二数学公式优秀9篇

发布时间:

高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展过程和本质。那么高二数学都有哪些公式呢?下面是整理的高二数学公式优秀9篇,如果对您有一些参考与帮助,请分享给最好的朋友。

高一到高二数学公式总结 篇1

1、乘法与因式分解

a^2-b^2=(a+b)(a-b)

a^3+b^3=(a+b)(a^2-ab+b^2) 

a^3-b^3=(a-b(a^2+ab+b^2)

2、三角不等式

|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|

3、一元二次方程的解

-b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a

4、根与系数的关系

X1+X2=-b/a X1*X2=c/a

注:韦达定理 判别式 b^2-4ac=0

注:方程有两个相等的实根b^2-4ac>0

注:方程有两个不等的实根b^2-4ac<0

注:方程没有实根,有共轭复数根

5、三角函数公式 两角和公式

sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

6、倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2

7、半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))

高二数学知识点及公式整理 篇2

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0

AB-AC=CB.即“共同起点,指向被减”

a=(x,y)b=(x',y')则a-b=(x-x',y-y')。

4、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律

结合律:(λa)·b=λ(a·b)=(a·λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。

3、向量的的数量积

定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。

定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。

向量的数量积的坐标表示:a·b=x·x'+y·y'。

向量的数量积的运算率

a·b=b·a(交换率);

(a+b)·c=a·c+b·c(分配率);

向量的数量积的性质

a·a=|a|的平方。

a⊥b〈=〉a·b=0。

|a·b|≤|a|·|b|。

高二数学公式:两角和差与和差化积 篇3

两角和差

cos(α+β)=cosα?cosβ-sinα?sinβ

cos(α-β)=cosα?cosβ+sinα?sinβ

sin(α�β)=sinα?cosβ�cosα?sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα?tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα?tanβ)

和差化积

sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]

sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]

cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]

cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

猜你感兴趣的:

高二数学公式:推导 篇4

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

=2sina(1-sin&;sup2;a)+(1-2sin&;sup2;a)sina

=3sina-4sin&;sup3;a

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cos&;sup2;a-1)cosa-2(1-sin&;sup2;a)cosa

=4cos&;sup3;a-3cosa

sin3a=3sina-4sin&;sup3;a

=4sina(3/4-sin&;sup2;a)

=4sina[(√3/2)&;sup2;-sin&;sup2;a]

=4sina(sin&;sup2;60�-sin&;sup2;a)

=4sina(sin60�+sina)(sin60�-sina)

=4sina*2sin[(60+a)/2]cos[(60�-a)/2]*2sin[(60�-a)/2]cos[(60�-a)/2]

=4sinasin(60�+a)sin(60�-a)

cos3a=4cos&;sup3;a-3cosa

=4cosa(cos&;sup2;a-3/4)

=4cosa[cos&;sup2;a-(√3/2)&;sup2;]

=4cosa(cos&;sup2;a-cos&;sup2;30�)

=4cosa(cosa+cos30�)(cosa-cos30�)

=4cosa*2cos[(a+30�)/2]cos[(a-30�)/2]*{-2sin[(a+30�)/2]sin[(a-30�)/2]}

=-4cosasin(a+30�)sin(a-30�)

=-4cosasin[90�-(60�-a)]sin[-90�+(60�+a)]

=-4cosacos(60�-a)[-cos(60�+a)]

=4cosacos(60�-a)cos(60�+a)

上述两式相比可得

tan3a=tanatan(60�-a)tan(60�+a)

高一到高二数学公式总结 篇5

8、和差化积

2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B))

2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB;

9、某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1)

1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

10、正弦定理

a/sinA=b/sinB=c/sinC=2R

注: 其中 R 表示三角形的外接圆半径

11、余弦定理

b^2=a^2+c^2-2accosB

注:角B是边a和边c的夹角

12、圆的标准方程

(x-a)^2+(y-b)^2=^r2

注:(a,b)是圆心坐标

13、圆的一般方程

x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0

14、抛物线标准方程

y^2=2px y^2=-2px x^2=2py x^2=-2py

15、侧面积表面积体积

直棱柱侧面积 S=c*h

斜棱柱侧面积 S=c'*h

正棱锥侧面积 S=1/2c*h'

正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l

球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h

圆锥侧面积S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0

扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H

圆锥体体积公式V=1/3*pi*r2h

斜棱柱体积 V=S'L

注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s*h

圆柱体 V=pi*r2h;

高二数学公式:半角公式与三角和 篇6

半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

sin^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

三角和

sin(α+β+γ)=sinα?cosβ?cosγ+cosα?sinβ?cosγ+cosα?cosβ?sinγ-sinα?sinβ?sinγ

cos(α+β+γ)=cosα?cosβ?cosγ-cosα?sinβ?sinγ-sinα?cosβ?sinγ-sinα?sinβ?cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα?tanβ?tanγ)/(1-tanα?tanβ-tanβ?tanγ-tanγ?tanα)

高二数学知识点及公式整理 篇7

1、计数原理知识点

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)

2、排列(有序)与组合(无序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm<>=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3、排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素。以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置。

捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)

插空法(解决相间问题)间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

(1)把具体问题转化或归结为排列或组合问题;

(2)通过分析确定运用分类计数原理还是分步计数原理;

(3)分析题目条件,避免“选取”时重复和遗漏;

(4)列出式子计算和作答。

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想。

4、二项式定理知识点:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

5、二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6、注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

高二数学公式 篇8

高中数学常用公式标准方程

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积S=c_h斜棱柱侧面积 S=c'_h

正棱锥侧面积S=1/2c_h'正棱台侧面积 S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2

圆柱侧面积S=c_h=2pi_h圆锥侧面积S=1/2_c_l=pi_r_l

弧长公式l=a_ra是圆心角的弧度数r>0扇形面积公式s=1/2_l_r

锥体体积公式 V=1/3_S_H 圆锥体体积公式V=1/3_pi_r2h

斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

柱体体积公式V=s_h圆柱体V=pi_r2h

高二数学知识点及公式整理 篇9

1、万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)

2、辅助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a

3、三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]