最新数学等腰三角形知识点归纳8篇
作为一位杰出的教职工,往往需要进行教学设计编写工作,借助教学设计可以提高教学效率和教学质量。教学设计应该怎么写才好呢?以下是人见人爱的小编分享的最新数学等腰三角形知识点归纳8篇,希望大家可以喜欢并分享出去。
等腰三角形的尺规作法: 篇1
可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。
等腰三角形的性质: 篇2
(1)等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
(2)等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
(3)等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或角的平分线所在的直线。
(4)等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
(5)等边三角形内任意一点到三边的距离之和为定值(等于其高)
(6)等边三角形拥有等腰三角形的一切性质。(因为等边三角形是特殊的等腰三角形)
最新数学等腰三角形知识点归纳 篇3
1.三角形的定义
由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形。
三角形有三条边,三个内角,三个顶点。组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的。顶点。
2.三角形的表示
三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c表示,AC可用b表示,BC可用a表示。三个顶点用大写字母A,B,C来表示。
注意:
(1)三条线段要不在同一直线上,且首尾顺次相接;
(2)三角形是一个封闭的图形;
(3)△ABC是三角形ABC的符号标记,单独的△没有意义。
3.三角形的主要线段的定义
(1)三角形的中线(在中文中,中有中间的意思而在这里就是边上的中线)
三角形中,连结一个顶点和它对边中点的线段。
表示法:①AD是△ABC的BC上的中线。
②BD=DC=1/2 BC
注意:①三角形的中线是线段;
②三角形三条中线全在三角形的内部且交于三角形内部一点(注:这点叫重心:当我们用一条线穿过重心的时候,三角形不会乱晃)
③中线把三角形分成两个面积相等的三角形。
(2)三角形的角平分线
三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段
表示法:①AD是△ABC的∠BAC的平分线。
②∠1=∠2=∠BAC.
注意:①三角形的角平分线是线段;
②三角形三条角平分线全在三角形的内部且交于三角形内部一点;(注:这一点角三角形的内心。角平分线的性质:角平分线上的点到角的两边距离相等)
③用量角器画三角形的角平分线。
(3)三角形的高
从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段。
表示法:①AD是△ABC的BC上的高线
②AD⊥BC于D
③∠ADB=∠ADC=90°.
注意:①三角形的高是线段;
②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;(三角形三条高所在直线交于一点。这点叫垂心)
③由于三角形有三条高线,所以求三角形的面积的时候就有三种(因为高底不一样)
4.三角形的角与角之间的关系
(1)三角形三个内角的和等于180°;
(2)三角形的一个外角等于和它不相邻的两个内角的和;
(3)三角形的一个外角大于任何一个和它不相邻的内角。
(4)直角三角形的两个锐角互余。
等腰三角形的判定方法: 篇4
(1)三边相等的三角形是等边三角形(定义).
(2)三个内角都相等(为60度)的三角形是等边三角形。
(3)有一个角是60度的等腰三角形是等边三角形。
(4) 两个内角为60度的三角形是等边三角形。
说明:可首先考虑判断三角形是等腰三角形。
等边三角形的性质与判定理解:
首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。
看过"等腰三角形的定义"的人还关注了:
等腰三角形的定义: 篇5
有两条边相等的三角形,是等腰三角形。其中相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
最新数学等腰三角形知识点归纳 篇6
一、等腰三角形知识点回顾
1、等腰三角形的性质
1、等腰三角形的两个底角相等(简写成“等边对等角”)。
2、等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3、等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4、等腰三角形底边上的垂直平分线到两条腰的距离相等。
5、等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6、等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
二、等腰三角形的判定:
如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
最新数学等腰三角形知识点归纳 篇7
等腰三角形:有两条边相等的三角形叫等腰三角形。
相等的两条边叫腰;两腰的夹角叫顶角;顶角所对的边叫底;腰与底的夹角叫底角。
等腰三角形性质:
(1)具有一般三角形的边角关系
(2)等边对等角;
(3)底边上的高、底边上的中线、顶角平分线互相重合;
(4)是轴对称图形,对称轴是顶角平分线;
(5)底边小于腰长的两倍并且大于零,腰长大于底边的一半;
(6)顶角等于180°减去底角的两倍;
(7)顶角可以是锐角、直角、钝角,而底角只能是锐角。
等腰三角形分类:可分为腰和底边不等的等腰三角形及等边三角形。
等边三角形性质:
①具备等腰三角形的一切性质。
②等边三角形三条边都相等,三个内角都相等并且每个都是60°。
等腰三角形的判定:
①利用定义;
②等角对等边;
等边三角形的判定:
①利用定义:三边相等的三角形是等边三角形
②有一个角是60°的等腰三角形是等边三角形。
含30°锐角的直角三角形边角关系:在直角三角形中,30°锐角所对的直角边等于斜边的一半。
三角形边角的不等关系;长边对大角,短边对小角;大角对长边,小角对短边。
等腰三角形的概念: 篇8
英文:equilateral triangle,“等边三角形”也被称为“正三角形”。
等边三角形也是等腰三角形的一种。
如果一个三角形满足下列任意一条,则它必必为等边三角形:
1.三边长度相等。
2.三个内角度数均为60度。
3.一个内角为60度的等腰三角形