生物质能通用4篇
这次为您整理了生物质能通用4篇,希望可以启发、帮助到大家。
生物质能范文 篇1
1、实施小康家庭能源工程,推进沼气的集约化经营,促进生物良性循环,建立生态农业。
生态农业的基本特点:充分合理利用自然资源,依靠生物之间的多种物资循环,在良性循环中保持相对平衡,系统内部的物质可以多次重复利用;从时间上和空间上不断提高太阳能的利用率和生物能的转化率,求得投入少产出多,达到生产水平较高,土地利用率较高、经济效益和生态环境质量较好的目的。
生态农业本身就是一种多元能源的农业发展道路,开发农村能源是建设生态农业的战略措施。以多级循环为主的生态农业,有各种各样不同模式和类型,其中以沼气为纽带的生态模式堪称是一枝独秀。沼气生产过程不仅可以最大限度地利用太阳能,并在沼渣沼液中保持原有的N、P、K等元素和有机质成为生态系统第二循环过程中的优质有机肥料和饲料,大大提高生态系中能流和物流的质量,这就是沼气生产在生态农业中的起的突出作用。
现在全国已有60%以上的沼气户(约300万农户)发展以沼气为纽带的庭院经济,农民增加收入9亿元以上。湖北省开展沼气、沼液、沼渣的综合利用的农户已超过20万户,年增收4000多万元。“九五”期间,随着农村产业结构的调整,为农村沼气发展提供良好机遇,湖北省将新增20-25万户农村家用沼气池用户,开展“三沼”综合利用农户将达到35万户以上,种植业、养殖业与沼气三结合或种植业、养殖业、加工业、沼气四结合利用类型的模式将进一步推广普及。为使这种模式在湖北省农村大量发展实施,应该注重选择各种养殖、种植业专业户大力举办沼气,以期获取最好的能源、生态经济效益,同时提高农民用能质量和水平,充实小康内涵。
2、实施能源--环保工程,推进城乡有机废水的厌氧消化处理,获得环保能源双效益。
目前,我国工农业有机废物废水排放量相当大,据统计,1990年轻工系统仅制糖、食品发酵、皮革等行业排放的高浓度有机废水就达60亿吨,占全国工业废水排放总量的22%,废水中含有机物排放量的50%,若利用其中的50%,即125万吨来制取沼气,年产沼气可达12.5亿M3,相当于原煤125万吨,标准煤90万吨,可发电17.86亿KW·h。同时,全国“菜篮子工程”的全面建设,集约化畜禽场的粪便排放量迅猛增加,给环境造成越来越大的压力。解决这一问题的最优化方案是采用生物质能的厌氧消化技术。以有机废物废水和禽粪粪便为原料,兴建大中型的沼气工程,既可以有效地治理环境污染,又能为当地职工和居民提供优质气体燃料,还可以利用发酵后的沼渣,生产养鱼喂猪的颗粒饲料。
近十年来,湖北省的厌氧消化技术经多学科、多部门的科研攻关,取得了较大的进展。在禽畜粪便的处理方面,先后兴建了容积分别为200-800立方米的沼气工程,采用上流式厌氧污泥床处理工艺,中温发酵,平均产气率0.5-0.8m3/m3·d。特别是1994年由武汉市能源所负责设计建造的荆门出口猪场能源环保工程,采用上流式厌氧污泥床加固液分离器,后期为射流曝气好氧处理,使得最后出水达到国家二级排放标准,在工业有机废水处理方面,共兴建了九处工程,首先在淀粉废水的中试研究上取得成功。为全国淀粉废水处理首开先河。紧接其后,酒厂的废水处理进入高潮,先后在七个酒厂兴建了沼气工程,总容积3250立方米,采用中高温发酵,滞留期4-5天,产气率3-3.5m3/m3·d。湖北省这些大中型沼气工程实现了工厂化产气,商品化供气,使能源建设上了一个新的台阶。它们有效地处理了酒厂的有机废水和集约化禽畜场厂的粪便,改善了环境卫生,对保护生态,促进生产,都具有明显的效益。“九五”期间,湖北省将按照国家制定的计划,重点在大中城市郊区、“菜篮子”工程基地,实施采用厌氧消化技术,以保护环境,兼取能源回收的能源--环保工程10-20处。近期首先在松滋、天门等地,兴建一批发酵工程总容量在1000m3以上的大型工程,实现集中供气,同时治理环境污染。
大中型沼气工程,作为一项新兴能源--环保工程,具有与其他能源工程(如城市煤气)不同的优越性的特点;
a、在工程目标上,煤气工程单纯制气,而沼气工程除制气外,又治理污染,并可获取有机肥料,而且不同的工程有不同的侧重点。
b、在制气原料上,煤气工程使用煤炭,这些煤炭还需经长途转运,而沼气工程使用就地可取的可再生生物质如禽畜粪便、食品、酿造、制药等企业排放的有机废水,全部是污染环境的废弃物。
c、从规模讲,煤气工程一般规模较大,沼气工程则可因地制宜,大中小并举,国家计委、农业部曾组织城市生物资源调查,不少中小城市的日排放高浓度有机废水上万吨。如按每吨COD5万毫克/升浓度的废水计算可产沼气20立方计算,每天排放1500吨有机废水所产的沼气即可供近2万户居民使用。如将这些工厂和郊区畜牧场统一规划,联片供气,将对城镇煤气化不足起到补充作用。
d、从建设周期来说,新建一个煤气气源厂,至少3-5年,而沼气工程,从动工到产气不到一年。
e、从投资上看,“六五”期间,平均每户1500元,政府还要对用户每人补贴煤气费4元,现在每增加一个煤气用户至少投资2000元。如河北唐山市煤焦制气厂每增加一个用户需增加投资1250元,而河北华北制药厂的沼气工程,每户仅需投资563元,还可节约排污罚款每吨1.27元。上海浦东煤气厂平均每户基建投资1500元,每千卡煤气成本3.8×10-5元,而上海前进农场的沼气站平均每个沼气用户投资709元(为浦东煤气厂的47.3%),制气成本为每千卡3×10-5元(比浦东煤气厂低21%)。
目前湖北省的大中型沼气工程无论其规模,其范围,其投资额均是远远不够的。一方面大量的粪便,工业有机废水的排放污染了环境,另一方面,处处在呼吁能源短缺,广大城镇居民迫切要求使用优质气体炊事燃料。这两大矛盾的最优化解决的办法就是积极、慎重地兴建大中型沼气集中供气工程,实践已反复证明只有这种对生物质能集约化应用的方式可同时做到治理环境污染,回收优质能源的双重效益。
3、开展生物质固化和气化的研究与试验,为农村小康化提供商品性能源。
为适应农村小康发展对用有质量的需求,我们在开展对生物质能利用技术的研究中,应转变过去那种单纯以解决缺烧为目标的观点,而应以实现小康为目的,把农村的低级能源转化为高级能源。因此,我们应立即着手进行生物质能固化和气化的转化技术研究与试验,并开展气化配套设施及用途的研制。如在木材、秸秆较为富余的地区,以这些原料或其它农业废弃物生产出成型燃料,以供给严重缺柴区使用(比烧煤便宜);同时,湖北省也应对国内生物能利用中极有前途的炭、油、气综合转换技术尽早进行研究及应用试验,使常规生物质转化为高品位能源,供农村生产和生活用。湖北省可用作气化炉原料的生物质资源,除按通常方法所统计的2678万吨(薪柴799万吨,秸秆1879万吨)外,还有大量的农业废弃物,如木屑、木片、棉壳、稻壳等,据不完全统计,全省可收集的棉壳有26万吨,稻壳140万吨。若用这些废弃物作气化炉的原料,则所得产品的成本将大幅度下降,产品的市场竞争力也得到提高。从炭、油、气这三种产品的社会需求来看,潜力是很大的。仅原沙市市,一年的生活用炭和工业用炭量就在5000吨以上,武汉市仅工业用炭量一年就需4700吨;此外,农民也迫切需要以秸秆变为木炭解决冬季取暖,至于木焦油、木质气、其用途更广,既可作优质燃料,也可作化工原料(木焦油)。使用炭、油、气综合转换设备主要以产炭为主,在调节炉内热解温度后,也能成为以油、气为主要产品的生产过程。而在以产气为主的气化炉中,利用稻壳经气化后即可得到优质燃气,据国内外研究试验表明,用稻壳气化、发电具有很高的经济效益,整套设施(包括土建、设备和稻壳灰利用)的投资,在两年内即可收回。江苏昆山有我国最大的稻壳发电系统,7套机组共1560千瓦,其发电量已成为粮食工业的主要能源。综上所述可见湖北省尽早开展生物固化与气化研究有百利而无一害,有原料、有市场、更有技术,湖北省科技力量雄厚、门类齐全,科技攻关势在必行。按照全国21世纪议程的规划,对于生物质的高层次利用技术要在2000年取得突破性进展,湖北省若不立即着手进行必将落伍。因此,湖北省要充分利用自己技术、原料、市场三大优势对生物固体气化转换技术作高起点研究。
关于加快开展我省生物质能集约化应用的建议
综上所述,既然开发生物质能在湖北省具有重大的战略意义,是发展生态农业的根本有效措施,而湖北省又具有开发利用生物质能的良好自然资源条件,对生物质能的集约化应用也具有一定的基础,那么制定规划,采取措施,加速湖北省生物质能利用技术的发展则是当然之举。建议如下:
1、将生物质能的应用纳入湖北省国民经济和社会发展“九五”计划和2010年规划。
国家十分关心包括生物质能在内的新能源和可再生能源发展,1995年1月5日,国家计委、科委、经贸委办公厅联合印发《新能源和可再生能源发展纲要》,提出的今后15年发展总目标是:“提高转换效率,降低生产成本,增大在能源结构中所占的比例。新技术、新工艺有大的突破,国内外已成熟的技术要实现大规模、现代化生产,形成比较完善的生产体系和服务体系;实际使用数量要达到39000万吨标准以上(包括生物质能传统利用方式的利用量),为保护环境和国民经济持续发展做出贡献”。根据国家《纲要》精神,结合湖北省实际情况,相应地编制湖北省生物质能“九五”计划和2010年规划,并做为湖北省生态农业和能源发展的相关内容,纳入湖北省国民经济和社会发展“九五”计划和2010年规划,使这一关系广大农民切身利益和农村工作重要内容的生物质能发展列上党和国家重要议事日程,并纳入法制轨道。
2、制订切实可行的优惠政策和支持措施。
生物质能转换技术是着眼于未来替代能源的、正在研究、探索、发展中的一项高新技术,许多技术的社会效益显著而经济效益却一时难以体现。许多项目是为贫困落实地区广大人民造福的扶贫事业,是改善生态环境、保障生态平衡的公益事业。为了促进这项战略措施的发展,建议我国政府也和世界各国一样,对于新能源的研究开发和推广应用给予积极的鼓励和支持,实行免税、减税、补贴、无息或低息贷款等优惠政策。比如对于大中型沼气工程的投资除了政策的部分拨款外,可将所要使用的技术改造贷款等优惠政策。比如对于大中型沼气工程的投资除了政策的部分拨款外,可将所要使用的技术改造贷款纳入政策性银行,由于大中型沼气工程同时也是一项环保工程,应采取行政、法制和经济手段鼓励甚至强制推广应用,从环保罚款中还可提留一定的比例作为投资来源之一。还可考虑从各种渠道筹集资金建立湖北省的生物质能研究开发基金,作为有关部门和科研人员从事专题项目的研究经费。
3、抓好示范项目,推选产业建设。
由于生物质能集约化应用,目前主要是面向广大农村和中小城镇,因此应以点带面,抓好示范项目,然后推而广之,使之形成气候,推进产业建设,示范项目的选取须注意:技术先进而又成熟,工艺不甚复杂,成本不是很高,能源利用率较高,经济和社会效益明显等,近期可以考虑围绕省柴节煤灶、生物质炭化有条件的地方可将固化气体裂解等技术综合使用和沼气工程等示范项目推进产业建设。
1981年起,国家提倡农村使用省柴节煤灶,注重节约、实用、方便的统一,经过十年努力,便迅速控制了过量燃用生物质资源的严峻局面,新型高效炉灶成为农民欢迎的厨具,现在全国有1.2亿农户使用热效率超过20%的炉灶,较旧式炉灶节些30-50%,1994年我省普及省柴灶已达1000万户,目前是,省柴节煤灶正向多功能、商品化方向发展,是农村能源一宗主要产业。
近年来湖北、河北、江苏、山东、安徽等省将秸秆开发为“生物煤块”,直接替代煤炭,供乡镇企业锅炉使用,或者进一步炭化,供乡镇企业锅炉使用,或者进一步炭化,制成生物炭,出售给冶金行业或提供出口,这样每亩秸秆可增值40-50元,压块机和生物煤已成为新产业。
另外,大型的沼气工程集中供气站在抓沼渣沼液的综合利用中,也呆派生出饲料、肥料等加工企业,小型户用沼气工程也可带动发展预制模块,家庭沼气--养殖等产业。
4、加强技术科研工作并突出重点。
新能源技术是世界新技术革命的支柱技术之一,高效率的利用生物质属于高科技领域,正在迅速发展,有许多技术难关须要攻克,有许多新产品有待开发研制,有许多成功的新技术要很好地消化吸收和推广应用,因此,科研工作至关重要,应大力加强,增加投资。
由于小柴炉灶和沼气工程已基本定型,只是巩固推广应用的问题,湖北省在“九五”期间可将生物质的气化、固化技术列为近期重点科研攻关项目,随着农村小康目标实现,农民用能水平、质量和设备现代化将成为评价小康内涵的重要内容,可以预见,炊事和采暖用能及其设备最具市场活力,可再生能源产品从研制经中试到商业利润回收,不同阶段应形成自身的梯度构架,即①成熟技术向市场投入一批,商业利润回收一批;②向市场过渡中试示范投入一批;③重点科技攻关项目起动一批。
“九五”期间逐步开展以下工作;
①进一步研究完善生物质气化装置,并扩大功能,开拓市场,进入食品、中药材、养殖、种植业的烘干供热领域。
②对生物质固化成型技术,建议两个面向,即一是制炭,一是制“生物煤”,制炭市场效益高,但对压制成型技术要求高:比重1.35-1.45,机械弯曲强度38kg/cm2,抗压强度320kg/cm2,关键技术是磨损件的使用寿命和可靠性,低压成型产品“生物煤”压制强度低,比重0.5-0.6,做到易燃,可运储,取代煤和柴。
③生物质热解液化技术难度较高,但应安排少量科技人员跟踪国内外动向,做些技术储备,为下一世纪生物质高品位产品进入市场打下基础。
以下项目对湖北省农村的现实虽然是较长期的,投资是巨大的,但2010年可能是被接受的产品:
a、热值达到(9350-450)×4.1868J/m3的可管道输送的甲烷化煤气和热解水煤气;
b、生物质注氧/蒸汽气化甲烷化,生产液体燃料替代矿物燃料油;
c、生物质制氢技术。
④重视生物质能软课的研究,为制定正确研究开发方针,少走弯路,减少失误,做好工程技术项目的前期准备,提供依据的佐证。
生物质能范文 篇2
1300万千瓦
2011年11月,有媒体披露《可再生能
源“十二五”发展规划》中有关生物质能
源部分规划内容已初步定稿。到2015年
底,生物质发电装机将达1300万千瓦,
到2020年将达3000万千瓦,在2010年底
550万千瓦的基础上分别增长1.36倍和
4.45倍。
点评:发展目标的确定将对涉足生
物质发电、垃圾焚烧发电以及生物燃料
领域的相关企业构成利好,也将坚定企
业投资该领域的信心。
2 世界最大非粮燃料乙醇企业被迫
停产
2011年3月21日,世界规模最大的木
薯乙醇生产企业广西中粮生物质能源有
限公司被迫全面停产。据媒体报道,问
题主要集中在车用乙醇汽油推广过渡期
过长,导致乙醇汽油市场覆盖率下降;
普通汽油与车用乙醇汽油长期混用导致
部分消费者车辆油耗增加、动力下降,
造成消费者对乙醇汽油的误解;燃料乙
醇生产企业发展面临困难等方面。
点评:社会加油站普通汽油的价格
优势加上消费者对乙醇汽油不科学的认
识和误解,使得乙醇汽油在广西的推广
使用难度不断加大,直接导致燃料乙醇
生产陷入困局。
3 国航生物燃料首次验证飞行成功
2011年10月28日,国航使用现役波音
747-400型客机加载由中石油与霍尼韦尔
旗下UOP公司合作生产的航空生物燃
料,在首都国际机场执行了验证飞行,
并取得成功。此次试飞使用的生物燃料
不用对飞机或发动机作出任何改变,仅
仅是对石油燃料进行了替换。
点评:本次试飞,将有助于削减运
营成本并降低飞机温室气体排放量,在
中国航空发展史上具有重要里程碑意
义。
4 用地沟油制生物柴油免征消费税
2011年6月30日,财政部、国家税务
总局联合通知,划定了废弃动植物
油 生产纯生物柴油免征消费税的适用范
围,详细列出四种免征消费税的生物柴
油原料。此前,国家曾过生物柴油
免征消费税的政策,但并没有明确免征
范围。
点评:出台这个措施是为了防止地
沟油、潲水油流入食品行业,鼓励企业
将这些废弃动植物油转化为工业用油。
生物柴油作为一种绿色能源,对柴油是
一个补充。
5 中国设专项资金收集城市餐厨废弃
物
2011年5月26日,国家发展改革委、
财政部联合《循环经济发展专项资
金支持餐厨废弃物资源化利用和无害化
处理试点城市建设实施方案》,将设专
项资金重点支持试点城市餐厨废弃物的
收集、运输、利用和处理体系的建设和
改造升级,以及法规、标准、管理体系
等能力建设。回收的废弃油脂将用于炼
化生物柴油和化工产品,以及一些低碳
环保的装修材料。
点评:餐厨废弃物问题处理利用好
了则可以变废为宝、化害为利,从源头
上解决用“地沟油”加工食用油的非法行
为,避免将餐厨废弃物直接喂猪,有效
解决餐厨废弃物作为生活垃圾填埋或焚
烧造成的资源浪费和环境污染问题,实
现社会效益、经济效益和环境效益的统。
6 河南30家生物柴油企业全部停产
截至2011年10月,河南省境内的近
30家生物柴油企业目前全部处于停产状
态,最早通过环评的洛阳新天源已停产
两年。地沟油收购价过高是致使生物柴
油企业停产的主要原因。生物燃料产业
要实现真正规模化发展,还需国家政策
扶持和引导。目前最迫切的做法是要对
餐厨垃圾的处置立法,餐厨垃圾的回收
处理不能市场化。
点评:目前国内所有生物柴油企业
都还在夹缝中生存,被上游地沟油供应
商挤压,受下游生物柴油用户逼迫,利
润偏低。
7 全国沼气标准化技术委员会在北京
成立
2011年12月15日,全国沼气标准化技
术委员会暨国际标准化组织沼气技术委
员会秘书处在北京成立,挂靠于农业部
科技发展中心。
点评:成立全国沼气标准化技术委
员会有利于加强沼气行业标准化工作,
提高沼气技术水平。有利于规范沼气行
业发展,提高沼气工程建设质量。有利
于沼气产业健康发展,创沼气产业名
牌。
8 西部规模最大的垃圾发电项目投入
试运行
2011年9月30日,由重钢三峰环境产
业集团公司联合美国卡万塔控股集团共
同建设的成都九江环保发电厂正式投入
试运行。该项目占地约90亩,共配置了
3台垃圾焚化炉,是目前西部规模最大、
工艺最先进的垃圾焚烧发电厂。
点评:该发电厂每天处理城市生活
垃圾约2000余吨,平均每日发电74.7万千
瓦时。
除电厂自用外,剩余的电全部送至
九江变电站,可供8万户居民使用。
9 世界最大生物质发电厂在广东运营
2011年10月18日,由广东省粤电集团
投资的目前世界上单机容量及总装机容
量最大的生物质发电厂正式投入商业运
营。广东粤电湛江生物质发电项目为2台
5万千瓦机组,其中1号机组已于2011年
8月底投运;2号机组现已顺利通过96小时
满负荷试运行,试运期间,机组平均负
荷率达100.6%,各项技术参数指标优
良。该生物质发电项目每年可替代约10万
吨标煤,减少二氧化碳排放约30万吨,减
少二氧化硫排放近2000吨。
点评:该项目在纯生物质燃料前提
下,采用具有自主知识产权的循环流化
床技术,进一步提升发电机组的效率,
成本和污染物排放更低、燃料适应性
强,燃烧温度低有效抑制结渣、腐蚀令
灰渣综合利用价值提高,更为节能环
保。
10 国内首个生物质炉VER自愿减排项
目在河北启动
2011年12月10日,由河北光磊炉业有
限公司实施的“30万台生物质炉具
VER自愿减排项目”在河北省故城县启
动。项目第一期将于2011年底前在故城
县推广5000台生物质炉具,配套建设30个
秸秆成型燃料厂,年产秸秆成型燃料
1.5万吨,替代标准煤7500吨,年减排二
氧化碳近2万吨。这是国内首个在生物质
炉具行业实施的VER自愿减排项目。
点评:生物质炉具是一种新型高效
低排放炉具,燃料以生物质为主,采用
生物质能范文 篇3
一、台湾生物质能产业发展的政策目标
1997年台湾为加强环境保护、促进经济发展,设立了“永续发展委员会”。2000年该会以“永续环境、永续社会、永续经济”为发展愿景,拟定了“二十一世纪议程一台湾永续发展策略纲领”和“永续发展行动计划”,确立了台湾发展可再生能源的政策,其中对生物质能的发展制定了具体的执行目标和计划。
首先是生物柴油的开发应用。台湾使用的生物柴油主要是从废弃的食用油中提取,它与传统柴油的性质相似,所提供的能量与传统柴油相当,安全性、性较传统柴油好,而且生物柴油燃烧后排放的污染物较传统柴油少,有利于改善空气质量和减少温室效应。将生物柴油按一定比例添加进传统柴油中可相应减少柴油使用量。2004年台湾开始在部分车辆中使用添加比例为1%(E1)的生物柴油;直到2010年,台湾相关部门才规定所有出售的传统柴油中必须添加2%(E2)的生物柴油,数量为l亿升;并计划在2011年至2015年间将这一比例提高至5%(E5),达3亿公升;2016年至2025年再提高到20%(E20),达到12亿公升。
其次是生物燃料乙醇的推广应用。生物燃料乙醇是指以生物质为原料,通过发酵、蒸馏及脱水等工艺而制成的乙醇,俗称酒精。将这种生物燃料乙醇按一定比例添加到传统的汽油中,可以逐步减少对传统汽油的依赖,以及二氧化碳的排放。台湾生物燃料乙醇的发展较晚,直到2007年才开始量产,2010年至2011年按3%(E3)的比例在传统汽油中添加生物燃料乙醇1亿公升,2011年到2015间计划使用添加比例为5%(E5)的生物燃料乙醇5亿升,2016至2025年达到添加20%(E20)的目标,共计20亿公升。
再次是生物质能发电。生物质直接燃烧产生的能量可用来发电,台湾目前有多座垃圾发电厂采用直接燃烧发电,但这种方法燃烧效率低。台湾“能源局”规划在2011到2015年将燃煤发电厂的煤与生物质燃料混合燃烧,既能提高发电量,又能充分利用农工废弃物,并逐渐扩大混烧比例,发电量达到85万千瓦;2016至2025年,计划采用垃圾气化发电技术,将垃圾转化为可燃气,再利用可燃气推动燃气发电机进行发电,发电量达140万千瓦。
二、台湾生物质能产业的发展现状
台湾生物质能的推广应用主要是由台湾“能源局”、“农委会”与“环保署”合作进行,目前台湾对生物质能的推广应用主要是以废弃物焚化发电、生物柴油和生物燃料乙醇的生产为主。无论是在生物质能的开发还是在推广应用方面,台湾尚处于起步阶段。
1、废弃物焚化发电
台湾早期利用生物质能主要是以垃圾焚化发电为主,但规模较小。目前台湾约有24座垃圾焚化发电厂,发电的装机容量累计为56万千瓦,其中大型垃圾焚化发电厂21座,总装机容量约47.3万千瓦。近年台湾“能源局”开始在全岛推广实行“垃圾全分类、零废弃”计划,在澎湖、花莲、南投兴建了“全分类、零废弃”的资源回收厂,将收集到的垃圾加工成型,再进行焚化发电。为提高燃料效率,台湾相关部门在花莲县丰滨乡配套兴建了岛内第一座废弃物固态衍生燃料(RDF-5)示范厂,每小时可处理1吨垃圾。台湾利用生物质燃烧发电技术,在燃料成型、燃烧设备以及燃烧工艺方面都较为落后,燃烧热效率低,发电量较小,无法形成规模效益。
另外台湾还有小规模的沼气发电。沼气来源主要是以废弃物为主,包括畜牧废水、家庭污水、城镇垃圾及各行业废水废物等四大类,其中畜牧废水主要来自养猪厂;家庭污水来自城市污水处理场;城镇垃圾主要以垃圾掩埋场为主;其他各行业废水废物则包括食品业、纺织业、橡胶业以及纸业产生的废弃物,利用燃煤混烧技术发电,总设计容量约6.53万千瓦,规模较小。
2、生物柴油生产和推广
台湾的生物质能产业中,生物柴油的生产与推广应用已初具规模。2001年台“经济部”颁布了关于生物柴油产销管理办法,委托“工研院”进行技术研发,鼓励民间投资设厂。在生物质原料选取方面,台湾“农委会”选择了大豆、向日葵、油菜等作为能源作物,同时在云林、嘉义及台南等地实施“能源作物试种推广计划”,协助农民与生产商进行合作,提供给农民每公顷4.5万元(新台币,下同)的环境补助及1.5万元的材料费补助,将休耕地转为种植大豆、向日葵和油菜。但是,由于台湾地处亚热带,这些温带作物的收成并不理想,随即就停止了能源作物的环境补助,能源作物的种植计划中止。之后,台湾“能源局”在嘉义大林试种白油桐树作为生物柴油的原料,但尚未大面积推广。因此目前台湾生物柴油的原料较为单一,以废弃食用油为主,不足部分使用进口棕榈油进行掺配。
2004年台湾“工研院”与台湾新日化公司进行技术合作,在嘉义兴建首座以废食用油为原料的生物柴油示范工厂制造生物柴油,产能为每年3000吨,并于2007年建成投产。目前台湾生产生物柴油的厂家已有新日化、积胜、承德油脂、玉弘等10家,合计生物柴油装置产能已达每年20万吨。依据台湾黄豆协会的统计,台湾每年消耗的动植物油脂约为77万吨,可产生15-20万吨的废食用油,将这些废食用油转化为生物柴油,每年可生产约15万吨的生物柴油,达到替代传统柴油使用量的3%,既解决了废食用油的回收问题,又产生经济效益。
生物柴油属于新能源,发展初期价格势必无法与传统石化柴油竞争,为促进生物质能产业的发展,鼓励生物柴油的使用,台湾采用的是低比例,循序渐进的添加方式,分四个阶段进行推广:
第一阶段,从2004年至2007年,实行为期三年、每年1亿元的“生物柴油道路试行计划”,补贴所有生产及购买生物柴油的厂商,鼓励公共交通运输车辆添加使用l%的台湾自产生物柴油。
第二阶段,2007年7月至2008年6月。一方面推行“绿色城乡计划”,补助石油炼制企业与加油站在出售的柴油中添加1%的台湾自产生物柴油B1;另一方面,推行“绿色公车计划”,将生物柴油B1供应给台湾13个县市的加油站,主要提供给垃圾车以及部分柴油客运车辆使用。
第三阶段,从2008年7月至2009年12月,强制要求出售的柴油中必须添加1%的生
物柴油。截至2009年,“绿色公车计划”累计使用生物柴油5500万公升,相应减少了同等的传统柴油使用量,并减少约18万吨二氧化碳排放量。
第四阶段,自2010年6月15日起,将所有出售柴油中生物柴油的添加比例提高至2%(B2)。依据台湾车用柴油的使用量估算,随着2011年台湾全面实施B2生物柴油之后,台湾生物柴油年使用量可望达1亿公升。
据“台经院”估算,若不考虑成本因素,台湾推动生物柴油将带来可观的社会经济效益:一是能源替代效益,台湾现在每年使用约1亿公升生物柴油,相当于每年减少250万桶原油的进口;二是环境效益,使用生物柴油,每年可减少二氧化碳等温室气体排放约33万吨;用废弃食用油生产生物柴油,不仅不会对粮食作物的生产及供应造成影响,反而具有回收废食用油的环境效益,变废为宝;三是产业效益,目前台湾合格的生产生物柴油的企业约10家,累计带动产业投资约10亿元,全面添加2%生物柴油后,估算年产值约30亿元,已形成一定的规模。
3、生物燃料乙醇的提取与应用
台湾的生物燃料乙醇产业起步较晚,目前尚处于发展初期。生物乙醇的提取主要有两种类型,一种是以糖类及淀粉为原料,如甘蔗、薯类、甜菜、甜高粱等,经发酵、蒸馏、脱水而制成燃料乙醇,这种生产技术已相对成熟。另一种是以木质纤维为原料,如蔗渣、玉米秆、稻草及稻壳、农业生产残留物、木屑等非粮食作物作为原料,这种被称为纤维素乙醇,纤维素乙醇是未来生物乙醇工业的发展方向。目前台湾提取生物乙醇主要以前一种方法为主,依靠糖类和淀粉类农作物作为原料。
台湾生物乙醇所需原料主要来自岛内22万公顷休耕地,台“农委会”对休耕地转种能源作物的给予每公顷4.5万元的补贴。除了传统的甘蔗种植之外,为降低成本,台“农委会农业试验所”正在研究培植甜高粱用于生产生物燃料乙醇。甜高粱栽培容易、产量高、需水量少、生长期短、适于机械播种及采收,是生产生物燃料乙醇最具潜力的农作物,其茎秆及叶片产量可达每公顷60吨以上,糖汁的固形物含量可达16%以上,每公顷可转换生物燃料乙醇2000公升,另外高粱残渣每公顷有16吨,若采用纤维乙醇生产技术,还可转换4500公升的纤维素乙醇。若将休耕地用于种植甜高粱之类的能源作物,可大大降低生物乙醇的成本。
受原料的影响,台湾制造生物乙醇的厂商大多由原来的食品企业转型而来,例如台糖、味王、味丹、台荣等。其中,台糖是生产生物乙醇的主要厂商,台糖曾有42座糖厂,糖业自由化之后,仅剩3座糖厂在运作。在生物能源推广示范期内,台湾相关部门给予补贴,将一部分糖厂转型为生物乙醇制造工厂,2009年台糖利用甘蔗为原料生产生物乙醇15万公升。台湾另一食品公司味王,早在2004年就在泰国设立木薯燃料乙醇工厂,以进口木薯糖蜜作为原料提取生物乙醇,所提取的生物乙醇最后交由“中油”公司进行脱水处理,按相应比例添加进传统汽油中。
台湾生物燃料乙醇的推广分为三个阶段进行:
第一阶段,2007年9月至2008年12月,在台北市范围内施行“绿色公务车先行计划”,设置了8座加油站供应添加3%(E3)生物燃料乙醇的汽油,由台北市各公务机关的车辆率先添加,并提供1元/公升的优惠,同时供应民众自愿添加使用。在第一阶段的推广计划中累计使用车次已达2万5千次以上,推广量为77万公升。
第二阶段,2009年1月至2010年12月,实行“都会区E3乙醇汽油计划”,补助台北、高雄两市加油站全面供应E3生物燃料乙醇汽油,2009年高雄已有五百多辆公共汽车开始使用E3汽油,这一阶段生物燃料乙醇推广量为1200万公升。
第三阶段,从2011年开始,在台湾岛内全面供应E3乙醇汽油,所有出售的汽油中必须添加3%的生物燃料乙醇,推广量为每年1亿公升,到2017年将达到添加20%的目标。
台湾生物乙醇产业的发展才刚起步,据估算,合理利用生物乙醇将对台湾的能源、农业、环保和经济发展产生综合效益。以甘蔗为例,若台湾以自产甘蔗为原料生产30亿升甘蔗乙醇,即可创造1.1万农业人口就业。若依台湾现有的规划,于2020年推广使用EIO(添加10%)生物燃料乙醇汽油,且全部使用台湾自产原料建置乙醇产业链,从能源投入的角度来看,将可替代原油进口1.16%;就环境保护的角度而言,可减少196万吨二氧化碳排放;在经济发展效益上,推动生物燃料乙醇产业累计将可创造345亿元投资,新增农业就业人口3.6万人。因此,生物质能源产业的发展将对台湾农业、能源和环境产生积极的影响。
三、台湾生物质能产业发展的限制因素
1、比较成本偏高
在不考虑传统能源对生态、环境造成负面影响的情况下,目前大多数生物质能产品的成本仍高于传统能源产品,台湾也不例外。
一方面,台湾土地面积狭小,且只能在休耕地上种植能源作物,土地较为分散,无法实现大面积栽种和集约经营,导致能源作物的生产成本和运输成本偏高。另一方面,由于农业生产的季节性和分散性与农业生物质能生产的连续性和集中性之间存在矛盾,原料供应受到季节和地域的限制,影响了产业的规模化经营。因此,以台湾现有的生物质能产业发展的条件及环境来看,原料制约了产业的发展,因此台湾的生物质能无法达到规模效应以降低成本。
生物柴油的成本分析。2005年台湾“农委会”选定向日葵、大豆、油豆等三种能源作物作为生物柴油原料。2006年开始引导农民将休耕地转种这些能源作物,并建立生产体系加以评估,由企业收购油料种子,再交由厂商加工生产生物柴油。经“台经院”的评估,台湾种植大豆和向日葵每公斤的生产成本分别为9.6元及21.3元,在没有补贴的情况下,用最便宜的大豆生产生物柴油的成本已达49.06元/公升,与进口棕榈油加工生产成本相当,远高于传统柴油每升27.5元的价格。若以废食用油为原料生产生物柴油,废食用油收购价约为23-25元/公升,再加上生产成本、运输成本及厂商利润等约为10元/公升,那么最终生物柴油的售价约为33-35元/公升,也高于传统柴油价格。因此台湾自产的生物柴油的价格偏高,没有市场竞争优势。
生物燃料乙醇的成本分析。据“台经院”对能源作物种植成本所做的分析,在不考虑任何补贴及利润情况下,以甘蔗作为原料,采用糖类及淀粉来提取生物燃料乙醇的最低成本约26元/公升,其次为甜高粱与玉米分别为26.45元/公升与27.7元/公升,加上甘蔗提取的乙醇因干燥费用较高,使得成本最终达到35.05元/升,较传统汽油23元/公升高,也较从巴西进口生物燃料乙醇28.47元/公升高。因此台湾自产生物燃料乙醇的价格仍偏高。
2、自主研发能力弱,部分技术和设备依
赖进口
台湾生物质能的开发利用仍处于产业化发展初期,除了上游的原料供应不足及成本偏高之外,台湾生物质能产业链中最为薄弱的环节是中游的生物质能生产和下游的供应体系。台湾生物质能生产缺乏具有自主知识产权的核心技术,相关的技术和设备仍掌握在巴西、欧美的主要厂商手中,尤其是生物燃料乙醇的生产技术和设备仍仰赖进口,甚至油品的供应设备也是以进口为主。因此,台湾要发展生物质能产业,不仅需要在优良品种选育、适应性种植、发酵菌种培育,还要在关键技术、配套工艺及相关供应设备等方面加强研发与应用技术的转化。
3、扶持政策尚不完善
台湾虽已制定了“再生能源发展条例”与“永续发展行动计划”,但还不完善。尤其是在科技研发、金融扶持、市场开放等方面缺乏合理有效的激励机制。首先,台湾生物质能的定价机制还没有体现出环境效益的因素,尚未形成支持农业生物质能产业持续发展的长效机制。其次,台湾虽已强制添加生物燃料,但也需扶持汽车制造商配合改造汽车动力系统,以适应混入规定比例的生物燃料。最关键的是对原料的生产补贴严重不足,依“台经院”的测算,如果台湾需要推广使用B2生物柴油1亿公升,至少需要将现有的22万公顷的休耕地全部种植能源作物,若农民在休耕地种植大豆作为能源作物出售,且获得“农委会”每期每公顷4.5万元的能源作物补贴,其净收益约为2.7万元/公顷,还不及休耕的3.8万元/公顷的补贴,显然农民并没有生产能源作物的积极性。因此,台湾在生物质能发展的上、中、下游的政策配套及相关法规仍不完善,这制约了岛内生物质能产业的发展。只有尽快制订明确的生物质能相关的推动政策及辅导补助或奖励措施,提高农民收益,降低企业风险,才能促进台湾生物质能产业的发展,提高竞争优势。
四、台湾生物质能产业的发展前景
台湾生物质能产业发展还处于起步阶段,以生物质能替代传统能源还面临诸多挑战,但发展生物质能是大势所趋,若台湾能进一步提升相关技术,再配以完善的政策,适合的发展模式,发展生物质能产业对台湾的能源、环保、农业都将产生积极的综合效应。
生物质能范文 篇4
关键词:生物质能直燃锅炉;燃烧系统;经济和社会效益
中图分类号:TK6 文献标识码:A
1利用秸秆发电的意义
1.1帮助解决能源短缺。生物质能又称“绿色能源”,开发“绿色能源”已成为当今世界上重大热门之一。
据了解,国外生物质能利用技术和装置已实现了规模化和产业化经营,以美国、瑞典和奥地利为例,生物质能利用已经分别占该国一次能源消耗量的4%、16%、10%。利用生物质能发电也是帮助解决我国能源短缺的有效途径之一。
1.2解决燃煤SO2对大气严重污染的需要。利用秸秆发电可以大量减少SO2的排放,秸秆中的含硫量在1%左右,不足燃煤含硫量的1/10。按照国家出台的关于可再生能源中长期发展的规划,到2020年,秸秆发电装机容量将达2400万kW左右,可减少有效SO2的排放量。
1.3增加农民收入,建设和谐社会的需要。我国农作物秸秆产量达7.5亿吨,其中4亿吨的秸秆可作为能源利用。按每吨300元计算,可增加收入1200亿元,对提高农民生活水平大有好处。
2生物质能热电工程概况
省内某生物质能热电工程装机容量为2×15MW高温高压生物质能直燃热电机组,已于2011年投产发电。
锅炉选用无锡华光锅炉股份有限公司的75t/h高温高压秸秆直燃锅炉,汽轮机发电机组选用青岛捷能汽轮机股份有限公司产品,机组额定功率为2×15MW。机组以当地棉花秸秆作为设计燃料,林木枝条为校核燃料。
3与常规火电机组的不同之处及设计新技术应用
3.1燃料。根据最新统计数据,当地可供电厂燃用的棉花秸杆有25.1亿吨,树木枝条约30亿吨,可满足电厂每年的燃用量。
3.2锅炉选型。生物质燃料中含有Cl和碱金属盐,燃烧时产生的烟气对锅炉受热面具有一定的腐蚀性。另外燃烧产生的灰份熔点较低,容易粘结在受热面管子外表面,形成渣层,会明显降低受热面的传热系数。
本项目采用自主开发设计的国内首台75t/h高温高压参数燃生物质燃料的锅炉。在设计中考虑了在高温受热面的管系中采用了有利于防止结渣、搭桥的结构,并采取了有效的吹灰措施,防止受热面腐蚀和产生大量的渣层。
锅炉采用水冷振动炉排的燃烧方式,有利于防止燃烧低灰熔点的秸秆在炉排面上结渣。汽水系统采用自然循环,在炉膛外布置了集中下降管。烟气流向采用四回程“M”型,炉膛和过热器通道采用全封闭的膜式水冷壁,很好地保证了锅炉的严密性能。过热器采用三级布置,并布置了二级喷水减温器,使过热蒸汽温度有较大的调节裕量,以保证锅炉蒸汽参数。尾部竖井内布置了单级省煤器和单级空气预热器,一、二次风平行进入各自的空气预热器,出空气预热器后分别进入炉排下一次风管和炉排上二次风管,再进入炉膛。烟气由引风机送入除尘、净化设备,净化处理合格后,经烟囱排入大气。
3.3上料系统。上料系统共设有一路两条带式输送机,每条带式输送机对应一台锅炉。系统在料仓间的卸料方式为。给料系统由炉前料仓、螺旋卸料机、皮带输送机及星型给料器等组成:燃料由皮带经双螺旋卸料机输送至炉前料仓,经料仓底部的螺旋给料机进入炉前两台星形给料器,然后进入炉膛燃烧。为防止燃料堵塞搭桥,和常规燃煤机组不同,料仓采用上部小下部大的方形料仓,并在底部设置螺旋给料机。星形给料器采用弹性活动板结构,防止卡料,同时起给料和密封作用。
3.4燃烧系统。燃烧系统由水冷振动炉排、炉膛及烟风系统等组成:燃料经星型给料器送入炉膛,秸秆被炽热的烟气加热,迅速将水分蒸发,气化,着火燃烧;一部分秸秆在空中燃烧,一部分落在炉排上继续燃烧,并在倾斜的水冷振动炉排的振动下不断向前翻滚、燃烧直至燃烬。一次风由一次风机送入空气预热器加热,再送入锅炉恻墙炉排下的两个风箱经六个风口进入风室,再经过炉排上的小孔进入炉膛。风室中有隔板分隔成六个独立的风室,进风管上设有调节挡板,可根据燃料和燃烧情况进行调节。二次风由二次风机送入空气预热器加热到,再经二次风箱送入炉膛。二次风布置在前、后墙炉拱处,在炉排的上方,前、后墙各布置了四层二次风。每层二次风管上均装有调风门。同时,从二次风箱上引出少部分热风最为播料风。烟气从炉膛经尾部烟道引至除尘器,经引风机送入烟囱。
3.5点火系统。采用火把点火,不再设置单独的油系统,节约了点火油。
3.6主厂房布置。主厂房采用常规的三列式布置,自东向西依次布置汽机房、除氧给料间、锅炉房、除尘器、引风机及烟囱等,烟囱布置在两炉之间。
由于给料系统和常规的给煤系统不同,除氧料仓间的布置根据秸秆电厂给料系统设备特点进行了调整,增加了给料设备的检修空间。除氧料仓间跨度为10.5m,总长度为66m,±0.00m布置有配电装置及化水加药装置;4.20m为电缆夹层;7.00m为运行层,设有机炉电集中控制室及电子设备间,并设有管道夹层;除氧层标高为14.50m,布置二台除氧器及给料系统设备。皮带层标高为24.50m,布置皮带输送装置。除氧给料间屋顶标高32.50m,布置有消防水箱。
4经济和社会效益
4.1项目每年燃用秸秆23亿吨左右,秸秆按300元/吨计算,农民每年将可增加收入6900万元,有利于改善农民生活条件。
4.2根据秸秆特性,电厂锅炉排出的灰渣可生产农家肥、果林肥,可以产生良好的经济效益。
4.3电厂年供电量1.83亿kW,有利的缓解了当地用电的紧张局面。
4.4项目采用专用的秸秆燃烧锅炉,年燃用各类秸秆23亿吨左右,相当于节省标煤10.6亿吨左右,节省了一次能源。
4.5由于秸秆是一种清洁燃料,含硫量低且灰渣量很少,则相应减少10.6亿吨标煤的排放SO2量和灰渣量,改善了生态环境。
4.6本工程为热电联产项目,年供热量约8.345×105GJ,从而可取代了分部自备锅炉。本工程的投产,将有利于节能、环保,符合国家综合利用的产业政策。
参考文献
[1]齐玄,李宁。河南省生物质能电厂调研[J].河南电力勘测设计,2007(02):66-72.