八年级数学教案最新4篇

发布时间:

教学难点是灵活应用分式的基本性质将分式变形。 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。一起看看新人教版八年级数学教案!欢迎查阅!这次帅气的小编为您整理了八年级数学教案最新4篇,希望能够帮助到大家。

人教版八年级数学教案 篇1

函数及其相关概念

1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点

(1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法

用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

人教版八年级数学教案 篇2

四边形

平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;

平行四边形的对角相等。

平行四边形的对角线互相平分。

平行四边形的判定

1.两组对边分别相等的四边形是平行四边形

2.对角线互相平分的四边形是平行四边形;

3.两组对角分别相等的四边形是平行四边形;

4.一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的定义:有一个角是直角的平行四边形。

矩形的性质:矩形的四个角都是直角;

矩形的对角线平分且相等。

人教版八年级数学教案 篇3

《反比例函数》知识点整理

1、定义:形如y=(k为常数,k≠0)的函数称为反比例函数。

2、其他形式xy=k(k为常数,k≠0)都是。

3、图像:反比例函数的图像属于双曲线。

反比例函数的图象既是轴对称图形又是中心对称图形。

有两条对称轴:直线y=x和y=—x。对称中心是:原《·》点。

4、性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小。

当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

5、|k|的几何意义:表示反比例函数图像上的点向两坐标轴

所作的垂线段与两坐标轴围成的矩形的面积。

勾股定理

1、勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

2、勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。那么这个三角形是直角三角形。

3、经过证明被确认正确的命题叫做定理。

我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

四边形

平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;

平行四边形的对角相等。

平行四边形的对角线互相平分。

平行四边形的判定

1、两组对边分别相等的四边形是平行四边形

2、对角线互相平分的四边形是平行四边形;

3、两组对角分别相等的四边形是平行四边形;

4、一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的定义:有一个角是直角的平行四边形。

矩形的性质:矩形的四个角都是直角;

矩形的对角线平分且相等。AC=BD

矩形判定定理:

1、有一个角是直角的平行四边形叫做矩形。

2、对角线相等的平行四边形是矩形。

3、有三个角是直角的四边形是矩形。

菱形的定义:邻边相等的平行四边形。

菱形的性质:菱形的四条边都相等;

菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

菱形的判定定理:

1、一组邻边相等的平行四边形是菱形。

2、对角线互相垂直的平行四边形是菱形。

3、四条边相等的四边形是菱形。

S菱形=1/2×ab(a、b为两条对角线)

正方形定义:一个角是直角的菱形或邻边相等的矩形。

正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。

正方形判定定理:1、邻边相等的矩形是正方形。2、有一个角是直角的菱形是正方形。

梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

直角梯形的定义:有一个角是直角的梯形

等腰梯形的定义:两腰相等的梯形。

等腰梯形的性质:等腰梯形同一底边上的两个角相等;

等腰梯形的两条对角线相等。

等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

解梯形问题常用的辅助线:如图

线段的重心就是线段的中点。平行四边形的重心是它的两条对角线的交点。三角形的三条中线交于疑点,这一点就是三角形的重心。宽和长的比是(约为0.618)的矩形叫做黄金矩形。

数据的分析

1、算术平均数:

2、加权平均数:加权平均数的计算公式。

权的理解:反映了某个数据在整个数据中的重要程度。

而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。

3、将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

4、一组数据中出现次数最多的数据就是这组数据的众数(mode)。

5、一组数据中的数据与最小数据的差叫做这组数据的极差(range)。

6、方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

7、平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。

新人教版八年级数学教案 篇4

一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算。

二、重点、难点

1、重点:熟练地进行分式乘方的运算。

2、难点:熟练地进行分式乘、除、乘方的混合运算。

3、认知难点与突破方法

讲解分式乘方的运算法则之前,根据乘方的意义和分式乘法的法则,计算 = = = , = = = ,……

顺其自然地推导可得:

= = = ,即 = 。 (n为正整数)

归纳出分式乘方的法则:分式乘方要把分子、分母分别乘方。

三、例、习题的意图分析

1、 P17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判

断乘方的结果的符号,在分别把分子、分母乘方。第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除。.

2、教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习。同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好。

分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点。

四、课堂引入

计算下列各题:

(1) = =( ) (2) = =( )

(3) = =( )

[提问]由以上计算的结果你能推出 (n为正整数)的结果吗?

五、例题讲解

(P17)例5.计算

[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方。第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除。

六、随堂练习

1、判断下列各式是否成立,并改正。

(1) = (2) =

(3) = (4) =

2、计算

(1) (2) (3)

(4) 5)

(6)

七、课后练习

计算

(1) (2)

(3) (4)

八、答案:

六、1. (1)不成立, = (2)不成立, =

(3)不成立, = (4)不成立, =

2、 (1) (2) (3) (4)

(5) (6)

七、(1) (2) (3) (4)