初一数学上册的教案【优秀12篇】
作为一名专为他人授业解惑的人民教师,编写教案是必不可少的,教案是实施教学的主要依据,有着至关重要的作用。我们该怎么去写教案呢?以下是细致的小编飞白为大家分享的初一数学上册的教案【优秀12篇】,希望对大家有所帮助。
初一数学上册教案 篇1
一、知识要点
本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
基础知识:
1、大于0的数叫做正数。
2、在正数前面加上负号“-”的数叫做负数。
3、0既不是正数也不是负数。
4、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
5、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。
数轴满足以下要求:
(1)在直线上任取一个点表示数0,这个点叫做原点(origin);
(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;
(3)选取适当的长度为单位长度。
6、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。
7、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
8、有理数加法法则
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.
(3)一个数同0相加,仍得这个数。
加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。
加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
表达式:(a+b)+c=a+(b+c)
9、有理数减法法则
减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)
10、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0.
乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)
乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
表达式:a(b+c)=ab+ac
11、倒数
1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。
12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.
13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(basenumber),n叫做指数(exponent)。
根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。
14、有理数的混合运算顺序
(1)“先乘方,再乘除,最后加减”的顺序进行;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
15、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即0
16、近似数(approximatenumber):
17、有理数可以写成m/n(m、n是整数,n≠0)的形式。另一方面,形如m/n(m、n是整数,n≠0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n≠0)表示。
拓展知识:
1、数集:把一些数放在一起,就组成一个数的集合,简称数集。
一、(1)所有有理数组成的数集叫做有理数集;
二、(2)所有的整数组成的数集叫做整数集。
2、任何有理数都可以用数轴上的一个点来表示,体现了数形结合的数学思想。
3、根据绝对值的几何意义知道:|a|≥0,即对任何有理数a,它的绝对值是非负数。
4、比较两个有理数大小的方法有:
(1)根据有理数在数轴上对应的点的位置直接比较;
(2)根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的'数学思想;
(3)做差法:a-b>0a>b;
(4)做商法:a/b>1,b>0a>b.
二、基础训练
选择题
1、下列运算中正确的是()。
A.a2a3=a6 B.=2 C.|(3-π)|=-π-3 D.32=-9
2、下列各判断句中错误的是()
A.数轴上原点的位置可以任意选定
B.数轴上与原点的距离等于个单位的点有两个
C.与原点距离等于-2的点应当用原点左边第2个单位的点来表示
D.数轴上无论怎样靠近的两个表示有理数的点之间,一定还存在着表示有理数的点。
3、、是有理数,若>且,下列说法正确的是()
A.一定是正数B.一定是负数C.一定是正数D.一定是负数
4、两数相加,如果比每个加数都小,那么这两个数是()
A.同为正数B.同为负数C.一个正数,一个负数D.0和一个负数
5、两个非零有理数的和为零,则它们的商是()
A.0B.-1C.+1D.不能确定
6、一个数和它的倒数相等,则这个数是()
A.1B.-1C.±1D.±1和0
7、如果|a|=-a,下列成立的是()
A.a>0B.a0或a=0D.a<0或a=0
8、(-2)11+(-2)10的值是()
A.-2B.(-2)21C.0D.-210
9、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水()
A.3瓶B.4瓶C.5瓶D.6瓶
10、在下列说法中,正确的个数是()
⑴任何一个有理数都可以用数轴上的一个点来表示
⑵数轴上的每一个点都表示一个有理数
⑶任何有理数的绝对值都不可能是负数
⑷每个有理数都有相反数
A、1B、2C、3D、4
11、如果一个数的相反数比它本身大,那么这个数为()
A、正数B、负数
C、整数D、不等于零的有理数
12、下列说法正确的是()
A、几个有理数相乘,当因数有奇数个时,积为负;
B、几个有理数相乘,当正因数有奇数个时,积为负;
C、几个有理数相乘,当负因数有奇数个时,积为负;
D、几个有理数相乘,当积为负数时,负因数有奇数个;
填空题
1、在有理数-7,,-(-1.43),,0,,-1.7321中,是整数的有_____________是负分数的有_______________。
2、一般地,设a是一个正数,则数轴上表示数a的点在原点的____边,与原点的距离是____个单位长度;表示数-a的点在原点的____边,与原点的距离是____个单位长度。
3、如果一个数是6位整数,用科学记数法表示它时,10的指数是_____;用科学记数法表示一个n位整数,其中10的指数是___________.
4、实数a、b、c在数轴上的位置如图:化简|a-b|+|b-c|-|c-a|。
5、绝对值大于1而小于4的整数有_____________________________________,其和为___________.
6、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=________.
7、1-2+3-4+5-6+……+20xx-2002的值是____________.
8、若(a-1)2+|b+2|=0,那么a+b=_____________________.
9、平方等于它本身的有理数是___________,立方等于它本身的有理数是_____________.
10、用四舍五入法把3.1415926精确到千分位是,用科学记数法表示302400,应记为,近似数3.0×精确到位。
11、正数–a的绝对值为__________;负数–b的绝对值为________
12、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大
13、在数轴上表示两个数,的数总比的大。(用“左边”“右边”填空)
14、数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________。
三、强化训练
1、计算:1+2+3+…+20xx+2003=__________.
2、已知:若(a,b均为整数)则a+b=
3、观察下列等式,你会发现什么规律:,,,。。。请将你发现的规律用只含一个字母n(n为正整数)的等式表示出来
4、已知,则___________
5、已知是整数,是一个偶数,则a是(奇,偶)
6、已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。
7、在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。
8、如果有理数a,b满足∣ab-2∣+(1-b)2=0,试求+…+的值。
9、如果规定符号“*”的意义是a*b=ab/(a+b),求2*(-3)*4的值。
10、已知|x+1|=4,(y+2)2=4,求x+y的值。
11、投资股票是一种很重要的投资方式,但股市的风云变化又牵动了股民的心。
例:某股民在上星期五买进某种股票500股,每股60元,下表是本周每日该股票的涨跌情况(单位:元):
星期一二三四五
每股涨跌+4+4.5-1-2.5-6
第1章(1)星期三收盘时,每股是多少元?
第2章(2)本周内最高价是每股多少元?最低价是多少元?
第3章(3)已知买进股票是付了1.5‰的手续费,卖出时需付成交额1.5‰的手续费和1‰的交易费,如果在星期五收盘前将全部股票一次性地卖出,他的收益情况如何?
第4章(4)以买进的股价为0点,用折线统计图表示本周该股的股价情况。
四、竞赛训练:
1、最小的非负有理数与最大的非正有理数的和是
2、乘积=
3、比较大小:A=,B=,则A B
4、满足不等式104≤A≤105的整数A的个数是x×104+1,则x的值是( )
A、9 B、8 C、7 D、6
5、最小的一位数的质数与最小的两位数的质数的积是( )
A、11 B、22 C、26 D、33
6、比较
7、计算:
8、计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
9、计算:
10、计算
11、计算1+3+5+7+…+1997+1999的值
12、计算1+5+52+53+…+599+5100的值。
13、有理数均不为0,且设试求代数式20xx之值。
14、已知a、b、c为实数,且,求的值。
15、已知:。
16、解方程组。
17、若a、b、c为整数,且,求的值。
1.2.1有理数
七年级上(1.1正数和负数,1.2有理数)
1.2有理数
动手实践,发现新知 篇2
观察、探究、讨论:从③式能看出减-3相当于加哪个数吗?
结论:减去-3等于加上-3的相反数+3。
初一数学上册的教案 篇3
一、教材分析
分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。
本节课学生主要采用“探究学习法”,学生通过多媒体的演示;主动探索,发现规律;并及时进行归纳总结,使学生的。主体地位得以体现又让学生充分感受探究有理数加法法则的过程,符合学生的认知过程。并且将单调的练习转换成学生互相提问,互相比赛的方式,使学生的学习热情得以调动。
采用这种学习方法的优点是:学生主动参与知识的发生、发展过程,在解决问题的过程中学习,在探究的过程中,激发学生学习兴趣和创作新热情。掌握这种学习方法后,对学生的终生学习、终生发展有积极的意义。
教学过程
《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设为以下五个环节:发现新知—再探新知—应用新知—深化拓展—小结巩固。
(二)探索规律,得出法则:
课件演示:(设置六个探究活动,以原点为起点,一只小狗在数轴上左右走动来表示情况,规定向左为正,向右为负)让学生体会两个数相加的规律。
(1)同向情况:
1.情景
探究1:一条狗先向右运动5米,再向右运动3米,那么两次运动后的总结果是什么?
探究2:一条狗先向左运动5米,再向左运动3米,那么两次运动后的总结果是什么?
2.探究问题:有理数两个负数相加的和该怎么确定符号?怎么确定绝对值?(学生主动思考,展开讨论)
3.猜一猜,说一说(分组概括两个负数的加法法则):
①两数相加,取相同的符号,并把绝对值相加;
②负数加负数,取负号,并把绝对值相加。
4.例:(-4)+(-5)
(2)异向情况:
1.情景:
探究3:一条狗先向右运动5米,再向左运动3米,那么两次运动后的总结果是什么?
初一数学上册的教案 篇4
一、等式的概念和性质
1.等式的概念,用等号“=”来表示相等关系的式子,叫做等式。 在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边。等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则。
2.等式的类型楷体五号
(1)恒等式:无论用什么数值代替等式中的字母,等式总能成立。如:数字算式 .
(2)条件等式:只能用某些数值代替等式中的字母,等式才能成立。方程 需要 才成立。
(3)矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立。如 , .
注意:等式由代数式构成,但不是代数式。代数式没有等号。体五号
3.等式的性质五号
等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。若 ,则 ;
等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式。若 ,则 , .
注意:
(1)在对等式变形过程中,等式两边必须同时进行。即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边。
(2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同。
(3)在等式变形中,以下两个性质也经常用到:
①等式具有对称性,即:如果 ,那么 .
②等式具有传递性,即:如果 , ,那么 .黑体小四
二、方程的相关概念黑体小四
1.方程,含有未知数的等式叫作方程。 注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母。二者缺一不可。楷体五号
2.方程的次和元 方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元。楷体五号
3.方程的已知数和未知数楷体五号
已知数:一般是具体的数值,如 中( 的系数是1,是已知数。但可以不说).5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上有等表示。
未知数:是指要求的数,未知数通常用 、 、 等字母表示。如:关于 、 的方程 中, 、 、 是已知数, 、 是未知数。楷体五号
4.方程的解 使方程左、右两边相等的未知数的值,叫做方程的解。楷体五号
5.解方程 求得方程的解的过程。
注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程。
6.方程解的检验楷体要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是。黑体小四
三、一元一次方程的定义体小四
1.一元一次方程的概念 只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数。楷体五号
2.一元一次方程的形式楷体五号
标准形式: (其中 , , 是已知数)的形式叫一元一次方程的标准形式。
最简形式:方程 ( , , 为已知数)叫一元一次方程的最简形式。
注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证。如方程 是一元一次方程。如果不变形,直接判断就出会现错误。
(2)方程 与方程 是不同的,方程 的解需要分类讨论完成。黑体小四
四、一元一次方程的解法
1.解一元一次方程的一般步骤五号
(1)去分母:在方程的两边都乘以各分母的最小公倍数。 注意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号。
(2)去括号:一般地,先去小括号,再去中括号,最后去大括号。 注意:不要漏乘括号里的项,不要弄错符号。
(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边。 注意:①移项要变号;②不要丢项。
(4)合并同类项:把方程化成 的形式。 注意:字母和其指数不变。
(5)系数化为1:在方程的两边都除以未知数的系数 ,得到方程的解 . 注意:不要把分子、分母搞颠倒。体五号
2.解一元一次方程常用的方法技巧 解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项以及运用分式的恒等变形等。
3.关于x的方程 ax b 解的情况 ⑴当a 0时,x ⑵当a ,b 0时,方程有无数多个解 ⑶当a 0,b 0时,方程无解
练习1、等式的概念和性质
1.下列说法不正确的是
A.等式两边都加上一个数或一个等式,所得结果仍是等式。
B.等式两边都乘以一个数,所得结果仍是等式。 C.等式两边都除以一个数,所得结果仍是等式。
D.一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式。
2.根据等式的性质填空。
(1) ,则 ; (2) ,则 ;
(3) ,则 ; (4) ,则 .
练习2、方程的相关概念
1.列各式中,哪些是等式?哪些是代数式,哪些是方程?
① ;② ;③ ;④ ;⑤ ;⑥ ;
⑦ ;⑧ ;⑨ .
2.判断题。
(1)所有的方程一定是等式。
(2)所有的等式一定是方程。
(3) 是方程。
(4) 不是方程。
(5) 不是等式,因为 与 不是相等关系。
(6) 是等式,也是方程。
(7)“某数的3倍与6的差”的含义是 ,它是一个代数式,而不是方程。
练习3、一元一次方程的定义
1.在下列方程中哪些是一元一次方程?哪些不是?说明理由:
(1)3x+5=12; (2) + =5; (3)2x+y=3; (4)y2+5y-6=0; (5) =2.
2.已知 是关于 的一元一次方程,求 的值。
3.已知方程 是关于x的一元一次方程,则m=_________
4.已知方程 是一元一次方程,则 ; .
练习4、一元一次方程的解与解法
1)一元一次方程的解 一)、根据方程解的具体数值来确定
1.若关于x的方程 的解是 ,则代数式 的值是_________。
2.若 是方程 的一个解,则 .
3.某同学在解方程 ,把 处的数字看错了,解得 ,该同学把 看成了 .
二)、根据方程解的个数情况来确定楷体五号
1.关于 的方程 ,分别求 , 为何值时,原方程:
(1)有唯一解;(2)有无数多解;(3)无解。
2.已知关于 的方程 有无数多个解,那么 , .
3.已知方程 有两个不同的解,试求 的值。
三)、根据方程定解的情况来确定楷体五号
1.若 , 为定值,关于 的一元一次方程 ,无论 为何值时,它的解总是 ,求 和 的值。
2.当 取符合 的任意数时,式子 的值都是一个定值,其中 ,求 , 的值。
五号
四)、根据方程整数解的情况来确定楷体五号
1.已知 为整数,关于 的方程 的解为正整数,求 的值。
2.已知关于 的方程 有整数解,那么满足条件的所有整数 =
3.若方程 有一个正整数解,则 取的最小正数是多少?并求出相应方程的解。
号
五)、根据方程公共解的情况来确定
1.若 和 是关于 的'同解方程,则 的值是 .
2.已知关于 的方程 ,和方程 有相同的解,求这个相同的解。
3.已知关于 的方程 仅有正整数解,并且和关于 的方程 是同解方程。若 , ,求出这个方程可能的解。
2)一元一次方程的解法 一)、基本类型的一元一次方程的解法
1.解方程:(1) (2) - =1- (3)
二)、分式中含有小数的一元一次方程的解法楷体五号
1.解方程:(1) (2)
(3) (4)
三)、含有多层括号的一元一次方程的解法体五号
1.解方程:(1) (2) (3)
四)、一元一次方程的技巧解法
1.解方程:(1) (2)
(3) (4)
一、填空题。(每小题3分,共24分)
1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.
2.若x=-1是方程2x-3a=7的解,则a=_______.
3.当x=______时,代数式 x-1和 的值互为相反数。
4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.
5.在方程4x+3y=1中,用x的代数式表示y,则y=________.
6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元。
7.已知三个连续的偶数的和为60,则这三个数是________.
8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成。
二、选择题。(每小题3分,共30分)
9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为。
A.0 B.1 C.-2 D.-
10.方程│3x│=18的解的情况是。
A.有一个解是6 B.有两个解,是±6
C.无解 D.有无数个解
11.若方程2ax-3=5x+b无解,则a,b应满足。
A.a≠ ,b≠3 B.a= ,b=-3
C.a≠ ,b=-3 D.a= ,b≠-3
12.解方程 时,把分母化为整数,得。
A、 B、 C、 D、
13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于。
A.10分 B.15分 C.20分 D.30分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额。
A.增加10% B.减少10% C.不增也不减 D.减少1%
15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米。
A.1 B.5 C.3 D.4
16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是。
A.从甲组调12人去乙组 B.从乙组调4人去甲组
C.从乙组调12人去甲组 D.从甲组调12人去乙组,或从乙组调4人去甲组
17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了场。
A.3 B.4 C.5 D.6
18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?
A.3个 B.4个 C.5个 D.6个
三、解答题。(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)
19.解方程:2(x-3)+3(2x-1)=5(x+3)
20.解方程:
21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明。已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片。
22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数。
23.据了解,火车票价按“ ”的方法来确定。已知A站至H站总里程数为1500千米,全程参考价为180元。下表是沿途各站至H站的里程数:
车站名 A B C D E F G H
各站至H站
里程数(米) 1500 1130 910 622 402 219 72 0
例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).
(1)求A站至F站的火车票价(结果精确到1元).
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了。请问王大妈是在哪一站下的车(要求写出解答过程).
24.某公园的门票价格规定如下表:
购票人数 1~50人 51~100人 100人以上
票 价 5元 4.5元 4元
某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元。
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?
(2)两班各有多少名学生?(提示:本题应分情况讨论)
初一数学上册的教案 篇5
一、学习目标
(1)在具体情境中进一步理解字母表示数的意义,通过判断,并理解代数式的意义。
(2) 初步掌握列代数式的方法,能根据要求正确列出相应的代数式。
(3)通过学习,培养学生正确规范的数学语言表达能力。
二、学习重点难点
代数式的意义以及正确地列出代数式。
三、学习过程
1、(1)我们知道用字母可以表示数,请你填空。
①七年级一班有男生20人,女生n人,那么共有学生_________人。
②买苹果s千克用了4元钱,买1千克苹果需要________元。
③长方形的长和宽分别是a厘米和b厘米,正方形的边长是c厘米,长方形与正方形面积的和是_______。
(2) 上述各问题中出现的如20+n、 、4n、(ab+c2)以及以前学习的n-m、2(a+b)、ab+ac等式子,都称为代数式。
(3)指出下列哪些是代数式:_______________________ (填序号)
(1) m+5 (2)2x-y+1 (3) 2+3+5 (4) 3 (5) (m-5n)2 (6) abc (7)a (8) 2+x=3 2、(1)例1 填空: ①甲数用a表示,乙数比甲数大3,那么乙数是______________. ②甲数用a表示,甲、乙两数的和为10,那么乙数是______________. ③甲数用a表示,甲数是乙数的5倍,那么乙数是______________. ④甲数用a表示, 乙数比甲数的平方少2,那么乙数是______________. ⑤长方形的长和宽分别为a cm、b cm .则该长方形的周长为________cm (1)自主归纳。 结合上面所有练习中出现的问题,能否总结出代数式的书写格式? (2)下列代数式中符合书写要求的是________ ,并说明理由。 (1)x×y×2 (2) a + b 厘米 (3) 2(b-a) (4) (a + b) ÷c (4.像“x的3倍与y的2倍的和”、“x与5的差的3倍”等用文字表述数量关系的'语言称为自然语言(或普通语言); 像3x+2y与3(x-5)等用代数式表述数量关系的语言称为数学语言。 5、将下列代数式用自然语言表示: (1) (a+b)2 (2) a2 -b2 6、请同学们将下面的代数式赋予它实际意义。a-b ___________4x_________________________ 四、课时小结: 这节课我学会了: 存在问题的地方: 五、课堂检测 1、列代数式表示(注意规范书写) ① x的 与a 的和是____________;② a,b?数和的平方减去a、b两数的立方差____________; ③ 长方形的周长为20cm,它的宽为xcm,那么它的面积为____________ ; ④ 某商品的利润为a元,利润率为1 《3.2代数式》测试 3、(题型三)某汽车的油箱里储油20 L,如果该汽车每行驶1 km耗油0.04 L,那么当汽车行驶n(n≤500)km时,油箱中还剩汽油______L. 4、(题型二)已知x2+x-1=0 ,则3x2+3x-5=________. 《3.2第2课时代数式求值》同步练习 解题突破 ⑤根据设计的程序进行计算,找到循环的规律,根据规律推导计算。 命题点 3 利用整体法求值 [热度:96%] 10、⑥已知-x+2y=5,则5(x-2y)2-3(x-2y)-60的值是( ) A.80 B.10 C.210 D.40 解题突破 ⑥先通过改变符号变换已知代数式,再利用整体代入法进行计算。 教学目标: 1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。 2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。 重点难点: 重点:了解勾股定理的由来,并能用它来解决一些简单的问题。 难点:勾股定理的发现 教学过程 一、创设问题的情境,激发学生的学习热情,导入课题 出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。 出示投影2(书中的P2图1—2)并回答: 1、观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。 正方形B中有_______个小方格,即A的面积为______个单位。 正方形C中有_______个小方格,即A的面积为______个单位。 2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问: 3、图1—2中,A,B,C之间的面积之间有什么关系? 学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C的关系呢? 二、做一做 出示投影3(书中P3图1—4)提问: 1、图1—3中,A,B,C之间有什么关系? 2、图1—4中,A,B,C之间有什么关系? 3、从图1—1,1—2,1—3,1|—4中你发现什么? 学生讨论、交流形成共识后,教师总结: 以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。 三、议一议 1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗? 2、你能发现直角三角形三边长度之间的关系吗? 在同学的交流基础上,老师板书: 直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理” 也就是说:如果直角三角形的两直角边为a,b,斜边为c 那么 我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。 3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立) 四、想一想 这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢? 五、巩固练习 1、错例辨析: △ABC的两边为3和4,求第三边 解:由于三角形的两边为3、4 所以它的第三边的c应满足=25 即:c=5 辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题 △ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。 (2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并为交待C是斜边 综上所述这个题目条件不足,第三边无法求得。 初一数学上册的教案【优秀12篇】 六、作业 课本P7§1.12、3、4 教学目标: 1、经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。 2、掌握勾股定理和他的简单应用 重点难点: 重点:能熟练运用拼图的方法证明勾股定理 难点:用面积证勾股定理 教学过程 七、创设问题的情境,激发学生的学习热情,导入课题 我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。在同学操作的过程中,教师展示投影1(书中p7图1—7)接着提问:大正方形的面积可表示为什么? (同学们回答有这几种可能:(1)(2)) 在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。 =请同学们对上面的式子进行化简,得到:即= 这就可以从理论上说明勾股定理存在。请同学们去用别的拼图方法说明勾股定理。 八、讲例 1、飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米? 分析:根据题意:可以先画出符合题意的图形。如右图,图中△ABC的米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB的长,由于直角△ABC的斜边AB=5000米,AC=4000米,这样的CB就可以通过勾股定理得出。这里一定要注意单位的换算。 解:由勾股定理得 即BC=3千米飞机20秒飞行3千米,那么它1小时飞行的距离为: 答:飞机每个小时飞行540千米。 九、议一议 展示投影2(书中的图1—9) 观察上图,应用数格子的方法判断图中的三角形的三边长是否满足 同学在议论交流形成共识之后,老师总结。 勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。 十、作业 1、1、课文P11§1.21、2 2、选用作业。 教学目标 1。使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数; 2。会初步应用正负数表示具有相反意义的量; 3。使学生初步了解有理数的意义,并能将给出的有理数进行分类; 4。培养学生逐步树立分类讨论的思想; 5。通过本节课的教学,渗透对立统一的辩证思想。 教学建议 一、重点、难点分析 本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。 正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作—5℃;比海平面高8848米,记作8848米,比海平面低155米记作—155米。由这两个实例很自然地,把大于0的数叫做正数,把加“—”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。 关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。 二、教法建议 这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的。从内容上讲,负数比非负数要抽象、难理解。因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数)。这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了。 为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。 三、正数与负数概念的理解 1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“—”号的数是负数。 2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…—6,—4,—2,0,2,4,6…,不能被2整除的数是奇数,如…—5,—4,—2,1,3,5… 3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。 4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。 四、有理数的分类 整数和分数� 1)正整数、零、负整数� 2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。 3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。 4)分数和小数的区别: 分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。 5)到目前为止,所学过的数(除π外)都是有理数。 观察温度计: 你能从温度计看出4℃比-3℃高出多少度吗? 学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(减最低气温,单位℃)如何用算式表示? 按照刚才观察到的结果,可知4-(-3)=7 ①,而4+(+3)=7 ②,∴由①②可知:4-(-3)=4+(+3) ③,上述结论的获得应放手让学生回答。 1、经历探索有理数减法法则的`过程,理解有理数减法法则。 2、会熟练进行有理数减法运算。 教学重点:有理数减法法则和运算。 教学难点:有理数减法法则的推导。 教与学互动设计 4.1从问题到方程:教案 【学习目标】 1、探索实际问题中的数量关系,并学会用方程描述; 2、通过对多种实际问题中数量关系的分析,初步感受方程是刻画现实世界的有效模型; 3、通过观察,归纳一元一次方程的概念。 【导学提纲】 1、左右两个图形中的天平都是平衡的,请回答以下问题: (1)你能知道左图中的食盐有多少克吗?你是怎么知道的? (2)右图中两个相同小球的质量相等,你能知道这两个小球的质量吗? 4.1从问题到方程:同步练习 1、(20xx?哈尔滨)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套。设安排x名工人生产螺钉,则下面所列方程正确的是( ) A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x C.1000(26﹣x)=2×800x D.1000(26﹣x)=800x 【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程。 【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得 1000(26﹣x)=2×800x,故C答案正确, 故选C 【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系。 《4.1从问题到方程》测试 1、某学校组织600名学生分别到野生动物园和植物园开展社会实践活动,到野生动物园的人数比到植物园人数的2倍少30人,若设到植物园的人数为x人,依题意,可列方程为_____. 2、某项工程,甲队单独完成要30天,乙队单独完成要20天,若甲队先做若干天后,由乙队接替完成剩余的任务,两队共用25天,求甲队单独工作的天数,设甲队单独工作的天数为x,则可列方程为_____. 3、某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套。设安排x名工人生产螺钉,根据题意可列方程得_____. 4、某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,若设这件T恤的成本是x元,根据题意,可得到的方程是_____. 学习目标:1、理解有理数的绝对值和相反数的意义。 2、会求已知数的相反数和绝对值。 3、会用绝对值比较两个负数的大小。 4、经历将实际问题数学化的过程,感受数学与生活的联系。 学习重点:1.会用绝对值比较两个负数的大小。 2.会求已知数的相反数和绝对值。 学习难点:理解有理数的绝对值和相反数的意义。 学习过程: 一、创设情境 根据绝对值与相反数的意义填空: 1、 2、 -5的相反数是______,-10.5的相反数是______, 的相反数是______; 3、|0|=______,0的相反数是______。 二、探索感悟 1、议一议 (1)任意说出一个数,说出它的绝对值、它的相反数。 (2)一个数的绝对值与这个数本身或它的相反数有什么关系? 2、想一想 (1)2与3哪个大?这两个数的绝对值哪个大? (2)-1与-4哪个大?这两个数的绝对值哪个大? (3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大? (4)两个有理数的大小与这两个数的绝对值的大小有什么关系? 三。例题精讲 例1. 求下列各数的绝对值: +9,-16,-0.2,0. 求一个数的绝对值,首先要分清这个数是正数、负数还是0,然后才能正确地写出它的绝对值。 议一议:(1)两个数比较大小,绝对值大的那个数一定大吗? (2)数轴上的点的大小是如何排列的? 例2比较-10.12与-5.2的大小。 例3.求6、-6、14 、-14 的绝对值。 小节与思考: 这节课你有何收获? 四。练习 1. 填空: ⑴ 的符号是 ,绝对值是 ; ⑵10.5的符号是 ,绝对值是 ⑶符号是+号,绝对值是 的数是 ⑷符号是-号,绝对值是9的数是 ; ⑸符号是-号,绝对值是0.37的数是 . 2. 正式足球比赛时所用足球的质量有严格的规定,下表是6个足球的质量检测结果(用正数记超过规定质量的克数,用负数记不足规定质量的克数). 请指出哪个足球质量最好,为什么? 第1个第2个第3个第4个第5个第6个 -25-10+20+30+15-40 3.比较下面有理数的大小 (1)-0.7与-1.7 (2) (3) (4)-5与0 五、布置作业: P25 习题2.3 5 家庭作业:《评价手册》 《补充习题》 六、学后记/教后记 这篇初一上册数学教案就为大家分享到这里了。希望对大家有所帮助! 【教学目标】 1、经历探索去括号法则的过程,了解去括号法则的依据。 2、会用去括号进行简单的计算。 3、经历观察、归纳等教学活动,培养学生合作精神和探究问题的能力。 【重、难点】 理解去括号法则,熟练运用去括号法则。 【教学过程】 一、情境创设 在假期的勤工俭学活动中,小亮从报社以每份0。4元的价格购进a份报纸,以每份0。5元的价格卖出b份(b≤a)报纸,剩余的报纸以每份0。2元的价格退回报社,小亮赢利多少元? 思考:如何合并你算出的这个代数式中的同类项? 同步测试 1、七年级(1)班男生有a人,女生比男生的2倍少25人,男生比女生的人数多。试回答下列问题。(用代数式来表示,能化简的化简) (1)女生有多少人? (2)男生比女生多多少人? (3)全班共有多少人? 测试 【拓展提优】 14、如果A是三次多项式,B是三次多项式,那么A+B一定是() A、六次多项式 B、次数不高于3的整式 C、三次多项式 D、次数不低于3的整式 15、多项式(xyz2—4yz—1)+(—3xy+z2xy—3)—(2xyz2+xy)的值() A、与x、y、z均有关 B、与x有关,而与y、z无关 C、与x、y有关,而与z无关 D、与x、y、z均无关 16、已知a=20xxx+20xx,b=20xxx+20xx,c=20xxx+20xx,那么(a—b)2+(b—c)2+(c—a)2的值等于() A、4 B、6 C、8 D、10 17、当x=1时,代数式mx3+nx+1的值为20xx,则当x=—1时,代数式mx3+nx+1的值为() A、—20xx B、—20xx C、—20xx D、—20xx 18、若M=3a2—2ab—4b2,N=4a2+5ab—b2,则8a2—13ab—15b2等于() A、2M—N B、3M—2N C、4M—N D、2M—3N 19、把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示。则图②中两块阴影部分的周长和是() A、4m cm B、4n cm C、2(m+n)cm D、4(m—n)cm初一数学上册教案 篇6
初一数学上册教案 篇7
创设情景,导入新课 篇8
教学目标: 篇9
初一的数学上册教案 篇10
初一上册数学教案 篇11
初一数学上册教案 篇12