初中数学教案【优秀5篇】
作为一名默默奉献的教育工作者,总归要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么应当如何写教案呢?本文是编辑帮助大家整编的5篇初中数学教案,欢迎参考,希望对大家有所帮助。
初中数学教案 篇1
八、板书设计
6.2? 不等式的解集
一、1.不等式的解集:一般地,一个含有未知数的不等式的所有的`解组成这个不等式的解的集合,简称不等式的解集.
2.解不等式:求不等式解的过程
二、在数轴上表示不等式的解集
1. 2.
三、注意:(1)“ · ”与“ °”;(2)“左边部分”与“右边部分”.
初中数学教案 篇2
教学目的
1、使学生了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。
2、使学生能了解实数绝对值的意义。
3、使学生能了解数轴上的点具有一一对应关系。
4、由实数的分类,渗透数学分类的思想。
5、由实数与数轴的一一对应,渗透数形结合的思想。
教学分析
重点:无理数及实数的概念。
难点:有理数与无理数的区别,点与数的一一对应。
教学过程
一、复习
1、什么叫有理数?
2、有理数可以如何分类?
(按定义分与按大小分。)
二、新授
1、无理数定义:无限不循环小数叫做无理数。
判断:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数。
2、实数的定义:有理数与无理数统称为实数。
3、按课本中列表,将各数间的联系介绍一下。
除了按定义还能按大小写出列表。
4、实数的相反数:
5、实数的绝对值:
6、实数的运算
讲解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?
例2,判断题:
(1)任何实数的偶次幂是正实数。( )
(2)在实数范围内,若| x|=|y|则x=y。( )
(3)0是最小的实数。( )
(4)0是绝对值最小的实数。( )
解:略
三、练习
P148 练习:3、4、5、6。
四、小结
1、今天我们学习了实数,请同学们首先要清楚,实数是如何定义的,它与有理数是怎样的关系,二是对实数两种不同的分类要清楚。
2、要对应有理数的相反数与绝对值定义及运算律和运算性质,来理解在实数中的运用。
五、作业
1、P150 习题A:3。
2、基础训练:同步练习1。
数学初中教案 篇3
一、教材分析:
(一)本节内容在全书和章节的地位
这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。
(二)三维教学目标:
【知识与能力目标】⒈理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;
【通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
【过程与方法目标】在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。
【情感态度与价值观】通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
(三)教学重点、难点:
【教学重点】勾股定理的证明与运用
【教学难点】用面积法等方法证明勾股定理
【难点成因】对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。
【突破措施】:
⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;
⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;
⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。
二、教法与学法分析
【教法分析】数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业”六个方面。
【学法分析】新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。
三、教学过程设计
(一)创设情景
多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。
(二)动手操作
⒈课件出示课本P99图19.2.1:
观察图中用阴影画出的三个正方形,你从中能够得出什么结论?
学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。⒉紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P100图19.2.2(一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能够发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。
⒊再问:当边长不为整数的直角三角形是否也存在这一结论呢?投影例题:一个边长分别为1.5,
3.6,3.9这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。
(三)归纳验证
【归纳】通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,,使学生学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整堂课充分发挥学生的主体作用,真正获取知识,解决问题。
【验证】先后三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般(转载于:,bc=6cm,求ab的长。
【设计意图】通过检测,考察学生对本节课的掌握情况。
(八)小结归纳,拓展深化(2分钟)
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的知识、方法、体验是哪个方面进行归纳,我设计了这么三个问题:
①通过本节课的学习,你学会了哪些知识,还有什么疑惑;
②通过本节课的学习,你最大的体验是什么;
③通过本节课的学习,你掌握了哪些学习数学的方法?
【设计意图】
1.让学生通过说,进一步增进认识,加深理解和记忆;
2.通过互相讲解疑惑,激发学生思考,鼓励提出疑难问题。
初中数学教案 篇4
课题:
对数函数
(1)——定义、图象、性质目标:
1.了解对数函数的定义、图象及其性质以及它与指数函数间的关系,会求对数函数的定义域。
2.培养培养观察分析、抽象概括能力、归纳总结能力、逻辑推理能力、化归转化能力;
3.培养坚忍不拔的意志,培养发现问题和提出问题的意识、善于独立思考的习惯,体会事物之间普遍联系的辩证观点。
重点:对数函数的定义、图象、性质
难点:对数函数与指数函数间的关系
过程:
一、复习引入:实例引入:回忆学习指数函数时用的实例我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个数 是分裂次数 的函数,这个函数可以用指数函数 = 表示。现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞,那么,分裂次数 就是要得到的细胞个数 的函数。根据对数的定义,这个函数可以写成对数的形式就是 如果用 表示自变量, 表示函数,这个函数就是 由反函数概念可知, 与指数函数 互为反函数这一节,我们来研究指数函数的反函数对数函数
二、新课
1.对数函数的定义:函数 叫做对数函数;它是指数函数 的反函数。对数函数 的定义域为 ,值域为 。
2.对数函数的图象由于对数函数 与指数函数 互为反函数,所以 的图象与 的图象关于直线 对称。因此,我们只要画出和 的图象关于 对称的曲线,就可以得到 的图象,然后根据图象特征得出对数函数的性质。
活动设计:由学生任意取底数作图,观察分析讨论,教师引导、整理 3.对数函数的性质由对数函数的图象,观察得出对数函数的性质。见P87 表 图象性质定义域:(0,+∞)值域:R过点(1,0),即当 时, 时 时 时 时 在(0,+∞)上是增函数在(0,+∞)上是减函数活动设计:学生观察、分析讨论,教师引导、整理4.应用例1.(课本第94页)求下列函数的定义域:(1) ; (2) ; (3) 分析:此题主要利用对数函数 的定义域(0,+∞)求解。解:(1)由 >0得 ,∴函数 的定义域是 ;(2)由 得 ,∴函数 的定义域是 (3)由9- 得-3 ,∴函数 的定义域是 注:此题只是对数函数性质的简单应用,应强调学生注意书写格式。例2.求下列函数的反函数① ② 解:① ∴ ② ∴
三、小结:对数函数定义、图象、性质四、作业: 课本第95页 练习 1,2 习题2.8 1,2
初中数学教案 篇5
教学目标:
(一)知识与技能
理解单项式及单项式系数、次数的概念;能准确迅速地确定一个单项式的系数和次数;会用含字母的式子表示实际问题中的数量关系。
(二)过程与方法
1.在经历用字母表示数量关系的过程中,发展符号感;
2. 通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力
(三)情感态度价值观
1.通过丰富多彩的现实情景,让学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,增长“用数学”的信心。
2.通过用含字母的式子描述现实世界中的数量关系,认识到它是解决实际问题的重要数学工具之一。
教学重、难点:
重点:单项式及单项式系数、次数的概念。
难点:单项式次数的概念;单项式的书写格式及注意点。
教学方法:
引导——探究式
在感性材料的基础上,学生自主探究现实情景中用字母表示数的问题,通过观察、分析、比较,找出材料中个体的共同点,教师引导学生共同抽象、概括单项式及相关的概念。
教具准备:
多媒体课件、小黑板。
教学过程:
一、 创设情境,引入新课
出示一张奔驰在青藏铁路线上的列车照片,并配上歌曲《天路》,边欣赏边向学生介绍青藏铁路所创造的历史之最。
情境问题:
青藏铁路西线上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?
设计意图:从学生熟悉的情境出发,创设情境,让学生感受青藏铁路的伟大成就,激发
爱国主义情感,得到一次情感教育。
解:根据路程、速度、时间之间的关系:路程=速度×时间
2小时行驶的路程是:100×2=200(千米)
3小时行驶的路程是:100×3=300(千米)
t小时行驶的路程是:100×t=100t(千米)
注意:在含有字母的式子中若出现乘号,通常将乘号写作“ · ”或省略不写。
如:100×a可以写成100a或100a。
代数式:用基本的运算符号(运算包括加、减、乘除、乘方等)把数和表示数的字母连接起来的式子。
代数式可以简明地表示数量和数量的关系,本节我们就来学习最基本也是最重要的一类代数式整式。
设计意图:从学生已有的数学经验:路程=速度×时间出发,建立新旧知识之间的联系
让学生历一个从一般到特殊再到一般的认识过程,发展学生的认知观念。
二、合作交流,探究新知
探究
思考:用含字母的式子填空(独立完成),并观察列出的式子有什么共同特点(小组可交流讨论)。
1、边长为a的正方体的表面积是__,体积是__.
2、铅笔的单价是x元,圆珠笔的单价是铅笔的2.5倍,则圆珠笔的单价是___元。
3、一辆汽车的速度是v千米∕小时,它t小时行驶的路程为__千米。
4、数n的相反数是__。
解:(1)6a2、 a3 (2)2.5x (3) vt (4)-n
思考:它们有什么共同的特点?
6a 2=6·a·a a3=a·a·a 2.5x=2.5·x vt=v·t -n=-1·n
单项式:数与字母、字母与字母的乘积。
注意:单独的一个数或字母也是单项式。
设计意图:从熟悉的实际背景出发,充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,获得数学猜想和数学经验,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。
火眼金睛
下列各代数式中哪些是单项式哪些不是?
(1)a (2) 0 (3) a2
(4) 6a (5)
(6)
(7)3a+2b (8)xy2
设计意图:加强学生对不同形式的单项式的直观认识。
解剖单项式
系数:单项式中的数字因数。
如:-3x的系数是 ,-ab的系数是 , 的系数是 。
次数:一个单项式中的所有字母的指数的和。
如:-3x的次数是 ,ab的次数是 。
小试身手
单项式 2a 2 -1.2h xy2 -t2 -32x2y
系数
次数
设计意图:了解学生对单项式系数、次数的概念是否理解,找出存在的问题,从而进一步巩固概念。
单项式的注意点:
(1)数与字母相乘时,数应写在字母的___,且乘号可_________;
(2)带分数作为系数时,应改写成_______的形式;
(3)式子中若出现相除时,应把除号写成____的形式;
(4)把“1”或“-1”作为项的系数时,“1”可以__不写。
行家看门道
①1x ②-1x
③a×3 ④a÷2
⑤ ⑥m的系数为1,次数为0
⑦ 的系数为2,次数为2
设计意图:单项式的书写和表示有其特有的格式和注意点,通过以上两个题目让学生进一步明确注意点。
三、例题讲解,巩固新知
例1:用单项式填空,并指出它们的系数和次数:
(1)每包书有12册,n包书有 册;
(2)底边长为a,高为h的三角形的面积 ;
(3)一个长方体的长和宽都是a,高是h,它的体积是 ;
(4)一台电视机原价a元,现按原价的9折出售,这台电视机现在的售价
为 元;
(5)一个长方形的长0.9,宽是a,这个长方形的面积是 .
解:(1)12n,它的系数是12,次数是1
(2) ,它的系数是 , 次数是2;
(3)a2h,它的系数是1,次数是3;
(4)0.9a,它的系数是0.9,次数是1;
(5)0.9a,它的系数是0.9,次数是1。
设计意图:学生能用单项式表示简单的实际问题中的数量关系,并进一步巩固单项式的系数、次数的概念。
试一试
你还能赋予0.9a一个含义吗?
设计意图:同一个式子可以表示不同的含义,通过这个例子让学生进一步体会式子更具有一般性,而且发散学生思维。
大胆尝试
写出一个单项式,使它的系数是2,次数是3.
设计意图:充分发挥学生的想象力,让每一个学生都有获得成功的体验,为不同程度的学生一个展示自我的机会,激发他们的学习兴趣。
四、拓展提高
尝试应用
用单项式填空,并指出它们的系数和次数:
(1)全校学生总数是x,其中女生占总数48%,则女生人数是 ,男生人数是 ;
(2)一辆长途汽车从杨柳村出发,3小时后到达相距s千米的溪河镇,这辆长途汽车的平均速度是 ;
(3)产量由m千克增长10%,就达到 千克;
设计意图:让学生感受单项式在实际生活中的应用,进一步掌握单项式及单项式系数、次数的概念。
能力提升
1、已知-xay是关于x、y的三次单项式,那么a= ,b= .
2、若-ax2yb+1是关于x、y的五次单项式,且系数为-3,则a= ,b= .
设计意图:照顾学有余力的学生,拓展学生思维,让学生体会跳一跳、摘桃子的乐趣。
五、小结:
本节课你感受到了吗?
生活中处处有数学
本节课我们学了什么?你能说说你的收获吗?
1、单项式的概念: 数与字母、字母与字母的乘积。
2、单项式的系数、次数的概念。
系数:单项中的数字因数;
次数:单项中所有字母的指数和。
3、会用单项式表示实际问题中的数量关系,注意列式时式子要规范书写。
设计意图:通过回顾和反思,让学生看到自己的进步,激励学生,使学生相信自己在今后的学习中不断进步,不断积累数学活动经验,促进学生形成良好的心理品质。
结束寄语
悟性的高低取决于有无悟“心”,其实,人与人的差别就在于你是否去思考,去发现!
设计意图:这是对学生的激励也是对学生的一种期盼,可以增进师生间的情感交流。
六、板书设计
2.1 整式
单项式概念 探究 例1 多
单项式的系数概念 观察交流 尝试应用 媒
单项式的次数概念 能力提升 体
七、作业:
1.作业本(必做)。
2. 请下面图片设计一个故事情境,要求其中包含的数量关系能够用单项式表示,并且指出它们的系数和次数(选做)。
设计意图:布置分层作业,既让学生掌握基础知识,又使学有余力的学生有所提高。让学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,活跃学生思维,使学生能够透彻理解知识,同时培养同学之间的竞争意识。
八、设计理念:
本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。
针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将提供大量感性材料,以启发引导为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,同时注重培养学生由感性认识上升到理性认识,为进一步学习同类项打下坚实的基础。