数学圆柱的体积公开课教案优秀7篇

发布时间:

作为一名优秀的教育工作者,很有必要精心设计一份教案,教案有助于学生理解并掌握系统的知识。来参考自己需要的教案吧!这次帅气的小编为您整理了数学圆柱的体积公开课教案优秀7篇,您的肯定与分享是对小编最大的鼓励。

《圆柱的体积》教学设计 篇1

评价样题:

学习流程:

一、创设现实情境,增强探究欲望。

1、出示橡皮泥做的圆柱体:怎样求出这个圆柱体橡皮泥的体积?你能想出几种办法

如果要求(出示百家姓广场上的圆柱形大鼎底座图片)圆柱形大鼎底座的体积,还能用刚才那样的方法吗?那怎么办?(学生试说出自己的办法。)

看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,对吗?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

二、亲历建构过程,提高探索能力。

1、提出问题,大胆猜想

你能猜一猜圆柱的体积怎样计算吗?你觉得圆柱体积的大小和什么有关?

(鼓励学生大胆猜测,说出自己的想法)

2、回顾旧知,帮助迁移

同学们都很会大胆猜想,但还要小心地论证猜想的科学性。你还记得圆面积转化什么图形的面积来求它的公式的吗?

(演示课件:圆转化成长方形)

3、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?

4、小组合作,验证猜想

下面请大家四人一组,借助手中的学具或用萝卜和土豆做成的圆柱分组进行探讨。

(出示合作提纲)小组长做好分工,并完成记录表。

活动记录表

思考:

1、圆柱体可以转化成哪种立体图形?

2、两种立体图形之间有怎样的联系?你们发现了什么?得出了什么结论?

3、怎样用简捷的形式表示你推导出来的公式呢?

活动过程:

1、我们用方法,把圆柱体转化成了体。

2、在这个转化的过程中,变了,没有变。

3、通过观察比较,我们发现:把一个圆柱体的底面分成许多相等的扇形,然后切、拼,就能得到一个近似的长方体。这个长方体的底面积等于圆柱体的(),高就是圆柱体的()。因为,长方体体积=(),所以,圆柱体的体积计算公式是v=()。

5、全班交流,展示评价。

评价交流中,借助评价样题。同时课件演示切拼的过程,同时演示将圆柱底面等分成32份、64份……,让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。 6、根据学生的发现引导学生推导出:

圆柱的体积=底面积×高,

用字母表示v = sh。

7、反馈练习。

(1)要求圆柱体积,必须知道哪些条件?

(2)出示例5,学生借助圆柱体积公式自主完成,并及时订正反馈。

圆柱的体积教学设计 相关内容:用转化的策略解决分数问题“长方体和正方体的表面积”的教学实录小学数学《倒数的认识》教案北师大版6年级数学第11册第1单元《圆的认识》教案1、分数四则混合运算《按比例分配》课后反思百分数的意义和读写法反思百分数(三)用百分数解决问题查看更多>>小学六年级数学教案

《圆柱的体积》数学教案 篇2

一、教学内容

人教版教材六年级下册19——20页例5例6及相关的练习题。

二、教学目标:

1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

2、经历“类比猜想——验证说明”的探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积。并会解决一些简单的实际问题。

3、注意渗透类比、转化思想。

三、教学重点:

理解、掌握圆柱体积计算的公式,能运用公式正确地计算圆柱的体积。

四、教学难点:

推导圆柱的体积计算公式。

五、教法要素:

1、已有的知识和经验:体积、体积单位,学习长方体正方体的体积公式的经验。

2、原型:圆柱模型。

3、探究的问题:

(1)圆柱的体积和什么有关?圆柱能否转化成已学过的立体图形来计算体积?

(2)把圆柱拼成一个近似的长方体后,长方体的长、宽、高是圆柱的哪个

部分?

(3)怎样计算圆柱的体积?

六、教学过程:

(一)唤起与生成。

1、什么叫物体的体积?我们学过哪些立体图形的体积计算?

2、长方体和正方体的体积怎样计算?它们可以用一个公式表示出来吗?

切入教学:怎样计算圆柱的体积?圆柱的体积计算会和什么有关?

(二)探究与解决。

探究:圆柱的体积

1、 提出问题,启发思考:如何计算圆柱的体积?

2、 类比猜测,提出假设:结合长方体和正方体体积计算的知识,即长方

体和正方体的体积都等于底面积×高,据此分析并猜测圆柱的体积与谁有关,有什么关系;提出假设,圆柱的体积可能等于底面积×高。

3、 转化物体,分析推理:

怎样来验证我们的猜想?我们在学圆的面积时是把圆平均分成若干份,然后拼成一个近似的长方形,推导出圆的面积计算公式。我们能不能也把圆柱转化为我们学过的立体图形呢?应该怎样转化?结合圆的面积计算小组讨论。学生汇报交流。

(拿出平均分好的圆柱模型,圆柱的底面用一种颜色,圆柱的侧面用另一种颜色,以便学生观察。)现在利用这个圆柱模型小组合作把它转化为我们学过的立体图形。学生在小组合作后汇报交流。

4、全班交流,公式归纳:

交流时,要学生说明拼成的长方体与原来的圆柱有什么关系?圆柱的底面积和拼成的长方体的底面积有什么关系?拼成的长方体的高和圆柱的高有什么关系?引导学生推导出圆柱的体积计算方法。圆柱的体积=底面积×高。(在这一过程中,使学生认识到:把圆柱平均分成若干份切开,可以拼成近似的长方体,这样“化曲为直”,圆柱的体积就转化为长方体的体积,分的份数越多,拼起来就越接近长方体,渗透“极限”思想。)教师板书计算公式,并用字母表示。

回想一下,刚才我们是怎样推导出圆柱的体积计算公式的?

5、举一反三,应用规律:

(1)你能用这个公式解决实际问题吗?20页做一做,学生独立完成,全班订正。

如果我们只知道圆柱的半径和高,你能不能求出圆柱的体积?引导学生推导出V=∏r2h

(2)教学例6

学生审题之后,引导学生思考:解决这个问题就是要计算什么?然后指出求杯子的容积就是求这个圆柱形杯子可容纳东西的体积,计算方法跟圆柱体积的计算方法一样,再让学生独立解决。反馈时,要引导学生交流自己的解题步骤,着重说明杯子内部的底面积没有直接给出,因此先要求底面积,再求杯子的容积。

(三)训练与强化。

1、基本练习。

练习三第1题,学生独立完成,这两个都可以直接用V=sh来计算。全班订正,注意培养学生良好的计算习惯。

2、变式练习。

第2题,这题中给的条件不同,不管是知道半径还是直径,我们都要先求出底面积,再求体积。学生独立完成,在交流时,注意计算方法的指导。

第3题。求装多少水,实际是求这个水桶的容积。学生独立完成,全班交流。水是液体,单位应用毫升或升。

3、综合练习。

第5题。这题中知道了圆柱的体积和底面积求高,引导学生推出h=V÷s,如果有困难,也可列方程解答。学生独立完成,有困难的小组交流。

4、提高性练习。22页第10题,学生先小组讨论,再全班交流。

(四)总结与提高。

这节课我们是怎样推导出圆柱体积的计算方法的?圆柱和长方体、正方体在形体上有什么相同的地方?像这样上下两个底面一样,粗细不变的立体图形叫做直柱体,直柱体的体积都可以用底面积×高计算。出示几个直柱体(例:三棱柱、钢管等),让学生计算出他们的体积。

《圆柱的体积》数学教学设计 篇3

教学目标:

1、结合实际,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、让学生经历观察、猜想、验证等数学活动过程,培养学生探究推理能力,体验数学研究的方法。

3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:

掌握和运用圆柱体积计算公式。

教学准点:

掌握圆柱体积公式的推导过程。

教学设想:

1、课前互动,我们做一个吹气球的游戏,让学生来对比气球变大后所占用空间的变化。在热烈的气氛中让学生感受物体的体积就是物体所占用空间的大小。

2、教学伊始我创设学具槽做圆柱学具这一睛境,让学生感知圆柱体积的概念,再通过让学生给这4个圆柱学具排序这一问题设疑,让学生明确学习目标。

3、动手实践是学生体验的主要方式,合作交流是学生体验的有效途径。所以在教学中我为图形转化、猜想推理创设有助于学生自主探究的三步曲:第一步:选择转化的方法。第二步:体验转化的过程、第三步:验证转化的结果。引导学生开展观察、操作、猜想、交流、转化的活动,让学生在数学活动中经历数学、体验数学。

4、用字母表示公式已经是学生很熟知的几何知识,因此我为学生提供了与圆柱体积有关的字母,让他们写出相应的公式并在接下来的环节中引导学生发现公式与习题的联系,让他们对号入座。学生根据不同的公式进行计算,给4个圆柱学具排序。这样可以深入理解不同的条件、不同的方法,同样可以得到圆柱的体积,在对比算法中掌握新知。

5、体积和容积这两个概念在五年级已经学过,学生会说意义,但是通过了解,学生并不是真正理解圆柱的体积和容积。所以我在第一次探究中安排了这样的环节,让学生在学习实践中区别圆柱的容积和体积。从形象到抽象建立圆柱的体积概念,符合学生的认知规律。第二次探究则是加入表面积这一刚刚学过的内容,让学生在为3道选择问题的练习中达到区别体积、容积、表面积的目的,从而实现学习运用的最佳状态。

6、最后的思维训练是计算正方体中最大圆柱体的体积,给学生以生动、形象、直观的认识,此题算法多样,富于启发地清晰揭示了知识的内在规律,使它和教学过程有机组合,把学习延伸到实际,让知识在体验中生成。

7、由于每个学生的知识经验、生活情景、思维方式的不同,对知识的学习也有独特的理解和感受。所以我让他们用今天的知识去解决生活中的问题,并写成数学日记,让他们用自己的方式去体验、探究学习过程。

教学过程:

一、问题导入,质疑问难

师:老师这里有两个气球,(师从兜里掏出两个气球,将其中一个递给学生。)你试试把它们变大。(老师再把两个气球放回兜里。)为什么这个放不回去了?(因为其中一个的体积变大了。)看来它占据了很大的空间。教室中还有哪些物体占据空间?

师:这是一个制作学具的学具槽,想一想,它可以做出什么样的学具来?

生:圆柱学具。

师:是的。仔细观察,你有什么发现?

生:圆柱学具占据了学具槽的空间。

师:这就是圆柱学具的体积。你真善于发现!能用你的话说说,什么是圆柱的体积吗?

生:圆柱的体积就是圆柱所占空间的大小。

师:谁来试着给这4个圆柱学具按体积从大到小排排序?你来试试。

生:体积大小接近,不能确定。

师:老师听懂了,无法判断的原因是不知道圆柱体积的大小,现在我们就来研究圆柱的体积。(师板书。)

二、图形转化。猜想推理

师:想一想,你有办法得到这4个圆柱学具的体积吗?(圆柱课件再从槽中跳出。)生:用公式计算。生:用水或沙子转化计算。师:你们是怎样转化的,具体说说。

生:用橡皮泥转化计算。

生:用圆形纸片叠加计算……

师:嗯,这些方法都很好,就在今天的课堂你会选择哪种方法?

生:因为没有实验学具,所以只能用公式计算。

师:其他的方法可以在课后进行。

师:想用公式计算的同学,你想怎样推导圆柱的体积公式呢?结合你们以往学习几何图形的经验,举例说明。

生:大部分图形公式的推导都是把新学的转化为学过的。例如:圆形可以转化为长方形。

师:联系旧知识,采用转化法,确实不错。师:那现在它是一个圆柱,你想怎么办?

生:像刚才一样进行平均分。

师:你能具体说说吗?

生:沿着圆柱的底面直径平均切分成16个小扇形。

师:都说实践出真知,接下来就请同学们拿出学具,动手尝试着进行转化,并说说转化后的结果。

生:将圆柱沿底面直径平均分成16个小扇形,切分之后,可以拼成一个近似的长方体。

师:(刚才我们将圆柱沿底面直径平均分成16个小扇形,拼成一个近似的长方体。)如果想让它更近似于长方体,你想分成多少份?(32)更近似一点。(64)你呢?(128)……

师:这是同学们刚才的转化过程。

师:打开书,自由读,用直线标记,找出关键词,依照关键词自由读读转化的过程。

师:现在再请一名同学到前面来演示转化过程,其他同学注意观察,圆柱转化为长方体后什么变了,什么没变7(圆柱转化为长方体时形状变了,但是它们底面积、高和体积都没变。)

总结文字公式:长方体体积=底面积x高

圆柱体体积=底面积x高

师:恭喜大家,我们已经成功地推导出圆柱的体积公式。(掌声鼓励一下)老师这有一些字母:d、s、r、c、h、v、π。它们与圆柱体体积的计算公式息息相关,请你们用字母表示出圆柱的体积公式。

生:v=shv=(d/2)2πxhv=π2xhv=(c÷π/2)2πxh

师:对比这四个公式你又有什么新发现?(彩色粉笔画线。)

生:相同之处都是底面积乘以高,不同是底面积求法不同。

师:谢谢你精彩的发现,你叫什么名字,认识一下,老师会记住你的。

三、运用公式,解决问题

师:现在我们已经知道了圆柱的体积公式,快来解决刚才的实际问题吧!这是我们要由大到小排序的4个圆柱学具,请你们拿出题卡计算出它们的体积并排序。

1号底面积50平方厘米,高2.1分米:

2号直径是10厘米,高20厘米;

3号半径是4厘米,高22厘米;

4号底面周长31.4厘米,高18厘米。

师:汇报一下你的计算和排序结果,并说说你应用了哪个公式?

师:与他答案相同的同学举手示意一下,你是怎样做的?现在你清楚了吗?

师:看来,灵活运用公式,并选择合理的算法。会使我们的学习更高效。

四、巧用公式,多重探究

师:同学们到现在为止,你都学到了哪些关于圆柱的知识?

生:表面积、体积、容积。

师:老师这里有一组习题。请你们选择合适的问题。

师:读完之后,你认为求什么就可以大声地说出来。

(生:体积、容积、表面积。)

学具厂有一个制作学具的圆柱形铁皮桶。它的底面直径是22厘米,高是25厘米,_________?从里面量底面直径是20厘米,高是25厘米______________9底面积是380平方厘米。侧面积是1727平方厘米_________________?

师:说说你选择问题的根据是什么?

生:体积是圆柱所占空间的大小。容积是圆柱能容纳物体的大小,表面积是圆柱所有面积的总和。

五、开放训练,拓展提升

师:学习很愉快,我们来庆祝一下:在一个棱长为a分米正方体盒中,放一个最大的圆柱体蛋糕,系上b分米长的丝带,(打结部分忽略不计)挖去1根直径为c厘米,高是d厘米的圆柱蜡烛空隙,这个蛋糕体积到底是多少呢?这次我们男女生比赛,列式不计算,看谁解法多并说明解题思路。

《圆柱的体积》数学教案 篇4

教学内容:

本内容是六年级下册第8页至第9页。

教材分析:

本节内容是在学生了解了圆柱体的特征,掌握了圆柱表面积的计算方法基础上进行教学的,是几何知识的综合运用,为后面学习圆锥的体积打下基础,教材重视类比,转化思想的渗透,引导学生经历“类比猜想——验证说明”的探索过程,掌握圆柱体积的计算方法。

学生分析:

学生已掌握了长方体和正方体体积的计算方法以及圆的面积计算公式的推导过程,在圆柱的体积这节课化的体现动手实践,自主探索,合作交流,为突破重、难点。本节课在教法和学法上从以下几方面着手:先利用教具通过直观教学让学生观察,比较,动手操作,经历知识产生的过程,发展学生思维能力;让学生通过“类比猜想——验证说明”的探索过程,主动学习,掌握知识形成技能,合作探究学习成为课堂的主要学习方式。

学习目标:

1、使学生理解和掌握圆柱体积的计算方法,在推导圆柱体积计算公式的过程中培养学生初步的空间观念和动手操作的技能。

2、使学生能够通过观察,大胆猜想和验证获得新知识在教学活动过程中发展学生的推理能力,渗透转化思想。

3、引导学生积极参与数学学习活动,培养学生的数学意识和合作意识。

教学过程:

出示教学情境:一个杯子能装多少水呢?

想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?

让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出相关数据,就能求出水的体积;倒入量筒里直接得到水的体积。

(设计意图:让学生根据自己已有的知识经验,把圆柱形杯子里的水倒入长方体或正方体容器,使形状转化成自己熟悉的长方体或正方体,只要求出长方体或正方体的体积就知道水的体积。)

出示第二情境:圆柱形的木柱子的体积是多少?用这种方法还行吗?怎么办?

(设计意图:创设问题情境,引起学生认知冲突,激起学生求知欲望,使学生带着积极的思维参与到学习中去,从而产生认知的飞跃。)

探究新知:怎样计算圆柱的体积?(板书课题:计算圆柱的体积)

大胆猜想:你觉得圆柱体积的大小和什么有关?圆柱的体积可能等于什么?(说说猜想依据)

长方体,正方体的体积都等于“底面积×高”猜想圆柱的体积也可能等于“底面积×高”。

(设计意图:在新知识的探索中,合理的猜测能为探索问题,解决问题的思维方向起到导航和推进作用。)

验证:能否将圆柱转化为学过的立体图形?

让学生利用学具动手操作来推导圆柱体积公式(小组合作探究:给学生提供充分的时间和空间),引导学生把圆柱体底面平均分成多个小扇形,沿着高切开,拼成一个近似的长方体。

思考:圆柱体转化成长方体为什么是近似的长方体?怎样才能使转化的立体图形更接近长方体?

(设计意图:让学生明确圆柱体的底面平均分成的扇形越多拼成的立体图形就越接近于长方体,渗透“极限”的思想。)

用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。

学生讨论交流:

1、把圆柱拼成长方体后,什么变了,什么没变?

2、拼成的长方体与圆柱之间有什么联系?

3、通过观察得到什么结论?

得到:圆柱的体积=底面积×高

V=Sh=πr2h

(设计意图:在数学活动中通过观察比较培养学生抽象概括能力,及逻辑思维能力。)

练习设计:

1、计算下面各圆柱的体积。

(1)S=60cm2 h=4cm(2)r=1cm h=5cm(3)d=6cm h=10cm

2、算一算:已知一根柱子的底面半径为0.4米,高为5米,你能算出它的体积吗?

(设计意图:使学生达到举一反三的效果,从而训练学生的技能,灵活掌握本课重点。)

3、试一试:

(1)一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个桶的容积是多少升?

(2)一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?

(设计意图:运用圆柱的体积计算公式解决生活实际问题,切实体验到数学源于生活,身边处处是数学。)

4、拓展练习:

(1)填表:

填表后观察:你发现了什么?先独立思考,再小组交流,最后汇报。

(设计意图:在教学时应找出知识间存在着的密切联系,帮助学生建立一个较为完整的知识系统,为以后“比例”的教学作了孕伏)

(2)一个柱形容器的底面直径是10厘米,把一块铁块放入这个容器后,水面上升2厘米,这块铁块的体积是多少?

(设计意图:体会测量不规则物体体积的方法,认识到数学的价值体验,使学生的思维处于积极的状态,培养学生思维灵活性,提高学生创造性解决问题的能力。)

课堂小结:谈谈这节课你有哪些收获?

(设计意图:采用提问式小结,让学生畅谈本节课的收获,包括知识,能力,方法,情感等,通过对本节课所学知识的总结与回顾,培养学生的归纳概括能力,使学生学到的知识系统化,完整化。)

教学反思

本节课采用新的教学理念,创设情境导入渗透转化思想,让学生在兴趣盎然中径历自主探究,独立思考、合作交流从而获得新知。

情境导入渗透转化思想激发学生的学习欲望,课的开始让学生想方法测量出圆柱形水杯中水的体积,学生想出把水倒入长方体容器中转化成长方体的体积来计算出水的体积,初步引导学生把圆柱体的体积转化为长方体的体积。教会学生数学方法,注重让学生在操作中探究,动手操作能展示学生个体的实践活动,在动手过程中易于激发兴趣,积累知识,发展思维,利于每一位学生自主,独立,创造性的学习知识,发展他们的能力,课中让学生经历知识产生的过程,理解和掌握数学基础知识,让学生在体验和探索过程中不断积累知识,逐步发展其空间观念,促进学生的思维发展。

《圆柱的体积》数学教案 篇5

设计说明

1.创设问题情境,激发学习兴趣。

兴趣是最好的老师。新课伊始,为学生创设“圆柱形橡皮泥的体积你会求吗?”的问题情境,引导学生经过思考、讨论、交流,找到解决的方法。这样的设计不仅自然渗透了圆柱(新问题)和长方体(已知)的知识联系,还让学生体会到可以有许多方法去解决生活中的实际问题,激发了学生的学习兴趣和探究新知的欲望。

2.实践操作,促进知识迁移。

知识和经验的积累来源于大量的实践活动。动手操作不但能使学生获得感性的体验,更能加深学生对知识的理解。本设计为学生创设动手操作的情境,使学生通过动手拼摆,充分感知图形之间的关系,深刻理解圆柱的体积公式的合理性,充分认识到图形转化过程中形变而质不变的辩证关系,使学生在把旧知迁移、发展、转化、构建为新知的同时,动手操作、观察及归纳能力也得到极大的提高。

课前准备

教师准备 圆柱的体积公式演示教具 多媒体课件

学生准备 圆柱的体积公式演示学具

教学过程

第1课时 圆柱的体积(1)

创设情境,导入新课

1.出示一块圆柱形橡皮泥。

师:同学们,我们以前学过长方体和正方体体积的计算方法,现在我想知道这块圆柱形橡皮泥的体积是多少,你有好的办法吗?

2.学生小组讨论交流并汇报。

预设

生1:可以把这块橡皮泥捏成长方体,利用长方体的体积公式来解决。

生2:可以把它放到量杯中,计算上升的水的体积。

3.引入新课。

解决生活中的问题有很多方法,需要我们去发现、去探究。这节课我们就共同去探究圆柱体积的计算方法。

设计意图:通过创设问题情境,引发学生思考,进一步体会“转化”思想。

新知探究

1.利用知识的迁移,猜想圆柱体积的计算方法。

(1)提出猜想。

师:在刚才的问题中同学们提出可以将圆柱形橡皮泥捏成长方体,这时会有什么变化?

(形状变了,体积没变)

师:我们已经掌握了长方体、正方体的体积计算方法,大家猜一猜:圆柱体积可能等于底面积×高吗?

(2)学生讨论、交流。

2.探究算法。

(1)提出问题:能不能借鉴把圆转化为长方形的方法,把手中的圆柱形学具转化为长方体?

(2)动手操作:把圆柱转化为长方体。

(3)汇报交流:介绍自己的转化方法。

(结合学生回答,课件演示转化过程:先沿圆柱底面的半径把圆柱平均分成16份,然后拼成一个近似的长方体)

(4)引导学生明确:由于我们分得不够细,所以看起来还不太像长方体;分得越多,拼成的立体图形就越接近长方体。(课件演示将圆柱分成更多等份并拼成一个近似的长方体的过程)

(5)汇报发现。

①拼成的长方体的体积与圆柱的体积有什么关系?

②长方体的底面积、高分别与圆柱的底面积、高有什么关系?

③长方体的体积等于什么?圆柱呢?

3.总结公式。

(1)圆柱的体积怎样计算?为什么?

(圆柱通过分割、拼组,可以转化成近似的长方体。这个近似的长方体的底面积与圆柱的底面积相等,高与圆柱的高相等。因为长方体的体积等于底面积乘高,所以圆柱的体积=底面积×高)

(2)说一说,怎样用字母表示圆柱的体积公式?

(学生反馈:V=sh)

(3)如果已知d、r、c和h,怎样求圆柱的体积?

求圆柱体积的直接条件是s、h,间接条件是d、r和c,所以圆柱的体积公式也可以表示为V=πr2h、V=πh、V=πh。

(4)圆柱和长方体、正方体一样,都是直柱体,你能总结出求它们的体积的统一计算方法吗?

(直柱体的体积都等于底面积×高)

《圆柱的体积》教学设计 篇6

教学内容:教材第25、26页例4、“试一试”、“练一练”和练习七的1、2题

教学目标:

1、进一步深入地引导学生去了解圆柱,让学生掌握圆柱的体积计算公式,并能解决实际问题。

2、培养学生自学能力,动手能力,观察分析和归纳知识的能力,让学生理解“转化”的方法。

教学重点:理解和掌握圆柱体积的计算公式。

教学难点:圆柱体积计算公式的推导。

教学准备:圆柱体模具。

教学过程:

预习作业检测

学习计算圆的面积时,是怎样得出圆面积的计算公式的?

求下面各圆的面积

R=1厘米求Sd=4分米求Sc=6.28米求S

长方体与正方体的体积都可以用什么公式来表示?

圆柱底面积/平方米高/米体积/立方米

0.61.2

0.253

合作探究

你们是怎么知道圆柱的体积=底面积×高的呢?生答预习得知。

课本上是怎么把圆柱体和长方体联系在一起的呢?

生答,同时师相机用课件展示圆柱体和长方体相互转化的画面。

用切拼法把圆柱体切成16等份、32等份、64等份,由此得出结论:

○1等份越多,拼成的物体越接近于长方体。

○2长方体与圆柱体等底等高。

○3长方体体积=圆柱体体积

○4圆柱的体积=底面积×高(V=sh)。

根据刚才的结论完成下面的题目:

○1一根圆柱形钢材,底面积是20平方厘米,高是1.5米,

它的体积是多少?生独立完成后,师有选择的找几位学生

的作业进行投影展示,全班交流评价。

○2一个圆柱形状的零件,底面半径5厘米,高8厘米,这

个圆柱的体积是多少立方厘米?

引导学生读题,思考。指名说出自己想的过程。生独立解

答,展示、交流、评价。

当堂达标检测

1、“练一练”第1题。

2、练习七第2题。

3、“练一练”第2题。

教学反思:

《圆柱的体积》教案 篇7

●教学内容

苏教版六年级下册第二单元圆柱和圆锥第三课时P17~18页例4,P2页练一练,练习一1~3。

●设计说明

教学目标:

知识技能:结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

数学思考:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

解决问题:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

情感态度:提高学习数学的兴趣和学好数学的信心。

教学重点:

掌握和运用圆柱体积计算公式。

教学难点:

利用“转化”的方法推导圆柱体积公式的过程。

●课时安排

1课时

●教学准备

教师准备:多媒体课件一套。把圆柱沿底面等分成16份的教具。 学生准备:预习教材,把圆柱沿底面等分成16份的'教具。

●教学过程

一、创设情境,提出问题

某玩具厂厂长,他们厂新开发了一种积木玩具,这三个积木的底面积和高都相等,他想比较一下这三个积木的体积的大小,同学们有什么方法?

二、动手实验,探索公式

1.观察、比较,建立猜想。引导生观察例4中的三个几何体,提问:

⑴长方体、正方体的体积相等吗?为什么?

(板书:长方体的体积=底面积×高)

⑵圆柱的体积与长方体、正方体的体积可能相等吗?这三个几何体的底面积和高都相等,它们的体积有什么关系?

2.实验操作,验证猜想

让学生自主探究(材料:圆柱体积木、圆柱体插拼教学具、师准备课件),想办法验证圆柱的体积与长方体、正方体的体积相等。

教师提示:你能想办法把圆柱转化成长方体吗?圆是如何转化成长方形的,可以模仿这样的方法来转化。

⑴小组合作研究怎样将圆柱体转化成一个长方体。

⑵小组代表汇报,全班交流。

(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励) ⑶演示操作。

a.请一名学生演示用切、插、拼的方法把圆柱体转化成长方体。其他学生模仿操作。

b.思考:这是一个标准的长方体吗?为什么?如果分割的份数越多,你会有什么发现?

c.电脑演示圆柱体转化成长方体的过程(从16等份到32等份再到64等份)。

3.观察比较,推导公式。

a.小组讨论:

圆柱体转化成长方体后,什么变了,什么没有变?

b.根据学生的观察、分析、推想,老师完成板书:

长方体的体积=底面积× 高

圆柱的体积 = 底面积× 高