绝对值教案优秀8篇

发布时间:

作为一位优秀的人民教师,通常会被要求编写教案,借助教案可以更好地组织教学活动。来参考自己需要的教案吧!这次为您整理了绝对值教案优秀8篇,如果对您有一些参考与帮助,请分享给最好的朋友。

七年级数学绝对值教案 篇1

一、教学目标

1.初步理解绝对值的意义,掌握求有理数的绝对值的方法,并会求有理数的绝对值。

2.利用绝对值解决?些简单的实际问题。

3.使学生初步了解数形结合的思想方法。

4.通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,体会绝对值的意义和作用,感受数学在生活中的价值。

二、教法设计

通过实体模型或问题实例创设学生参与情景,在自主看书寻找问题答案后探求绝对值的意义及应用。

三、教学重点和难点

重点:初步理解绝对值的意义,会求一个有理数的绝对值。

难点:对绝对值意义的初步理解。

四、课时安排

1课时

五、师生互动活动设计

自主、探究、合作、交流。

六、教学思路

(一)、导入

1.教师拿出准备好的数轴模型,让学生观察后摆放在讲台前,叫两个学生站在绳上标有点12、点6的位置,让其他学生观察度量后回答:这两个同学与原点的距离各是多少?

另外叫两个学生分别站在绳上标有点一6、点一12的位置,其他学生观察度量后回答:这两个同学与原点的距离各是多少?

(给学生充分的时间思考,相互讨论、探讨。)

或:创设问题情景

挂出画有数轴的磁性黑板,两只小狗分别站在数轴上原点的左、右两侧3个单位的点上,向它离开原点的'距离各是多少?(激情引趣,导人新课)

2.概念的引述.

教师引导学生看书自学后,举例说明:什么是一个数的绝对值?如何表示一个数的绝对值?

(叫学生板书)

(学生在自学的基础上,可相互合作、探讨,教师参与学生的讨论,并进行个别指导。)

3.引导学生思考书中“想一想”:互为相反数的两个数的绝对值有什么关系?

(在学生充分思考后,教师要引导学生相互说,并叫5个学生上黑板举例说明这个关系。)

(二)、新知识运用

例1:求下列各数的绝对位:(小黑板示)

、 、0、-7.8、

教师示范一题的解题格式,其余题目由学生独立完成。(培养学生规范化解题的良好习惯)

四、知识拓展

师生互动,先要求学?思考、解决,再在组内互相交流。

1.(1)在数轴上表示下列各数:

一1.5、一3、一1、一5.

(2)求出以上各数的绝对值,并比较它们的大小。

(3)你发现了什么?

(培养学生独立思考解决问题的习惯,学会发现问题,总结规律。)

2.如果=3.5,那么

3.

4.字母a表示一个正数,-a表示什么?- a 一定是负数吗?

(字母表示数的意义,为下一章的代数式做准备。)

视学生掌握知识的实际增况开展自编题,编出的题目先在小组内互相交流,再在小组内选出一题在全班交流。

五、小结

1.知识点:

(1)绝对值的定义二

(2)一个数的绝对值与这个数的关系。

2.数学思想方法:数形结合的思想。(培养学生总结能力)

自我评价

本课设计体现的几个教学理念:

1.既注重学生的全面发展、又重视突出重点。在教学过程中不仅考虑使双基、能力和非智力教学目标的切实实现,而且突出了培养思维能力这个重点,着重培养学生思维的准确性、深刻性、批判性、创新性等优秀品质。

2.突出了归纳思维方法和学生创新意识的培养。这主要是通过求绝对值的法则的学习过程和“知识拓展”中提出的问题而实现的。

3.学生的自主探索和教师的有效而及时的组织、引导与合作相结合。本课设计者根据初一学生的认和水平,既注重安排他们的自主探究活动,又及时地进行引导、讲解和帮助,这一教学理念贯穿本设计始终。

4.注重教学材料的呈现方式,采用磁性黑板的直观作用和多变而有趣的练习,激发学生的学习兴趣和参与教学活动的积极性,增强了教学的情境性.

5.本课设计者电教手段的应用没有得到体现,只适合硬件条件较差的学校或对新技术手段不熟的教师使用。

绝对值教案 篇2

教学目标:

通过数轴,使学生理解绝对值的概念及表示方法

1、 理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算

2、 通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法

3、 通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力

教学重点:

理解绝对值的概念、意义,会求一个数的绝对值

教学难点:

绝对值的概念、意义及应用

教学方法:

探索自主发现法,启发引导法

设计理念:

绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义 .通过想一想,议一议,做一做,试一试,练一练等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。

教学过程:

一、 创设情境,复习导入

1.今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题。(用多媒体出示引例)

星期天张老师从学校出发,开车去游玩,她先向东行20千米,到了游乐园,下午她又向西行30千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

① +20千米,-30千米; ②(20+30)0.15=7.5升

2.在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反

意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的

路程有关,而与行驶的方向没有关系,所以没有负数。这说明在实际生活中,有些问题

中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了。你还能举出其他

类似的例子吗?

3.小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许, 气氛热烈。教师巡视,偶尔参加其中一组的讨论,但不直接肯定或否定学生的问题,而是引导鼓励学生思考、交流,请各小组派代表汇报讨论结果。

我们小组举的例子是:我爸爸喜欢炒股,一天他支出10 000元购买A股票,同一天他又抛出B股票收入15 000元,规定支出为负,那么爸爸两次的交易额用有理数如何表示?如果交易所每次交易按总额的千分之一收费,那么爸爸的这两次交易需交多少交易费?

4.在实际生活中存在不关注相反意义的例子,刚才我们所举例子中的计算,都不必考虑它们的正、负性,看来我们的确很有必要给上面涉及的量取一个名字。我们把这个量叫做有理数的绝对值。

二、 合作交流、探索新知

1. 绝对值的概念

⑴ 如图,在数轴上,+3和-3虽然符号不同,但表示这两个数的点到原点的距离都是3,

我们把这个距离叫做+3和-3 的绝对值。

+3的绝对值就是数轴上表示+3的点到原点的距离,+3的绝对值是3,记作: =3

-3的绝对值就是数轴上表示-3的点到原点的距离, -3的绝对值是3,记作: =3

⑵ 一个数a的绝对值是数轴上表示数a的点到原点的距离, 数a的绝对值,记作:

2. 探索绝对值意义

⑴ 学生探索:求6,-6, ,- ,2.5,-2.5的绝对值

小组讨论:互为相反数的两个数的绝对值有什么关系?

规律总结:互为相反数的两个数的绝对值相等

⑵ 学生抢答:

学生小组讨论得出:

一个正数的绝对值是它的本身。 即:若a0,则 =a

一个负数的绝对值是它的相反数。 即:若a0,则 =-a

0的绝对值是0 . 即:若a=0,则 =0

(3)学生活动:

在数轴上自己标出五个数,让同桌指出它们的绝对值,引导学生观察,讨论得出:

任何一个数的绝对值都是非负数(正数和0). 0

= =

三、 举一反三,灵活应用

例1.求下列各数的绝对值:-4,-1 ,0,+2,+3

解: ; ; ;

; .

注:通过此题,复习巩固绝对值的概念,表示法,意义

例2,计算

① ②

解: 原式=5-3.4-0+1.9 解: 原式=

=3.5 =0

注:通过此题,复习巩固绝对值的意义

例3.求出绝对值是12, ,0的有理数

解: ① ∵

绝对值是12的有理数是12

② ∵

绝对值是 的有理数是

③∵

绝对值是0的有理数是0

小结:绝对值等于一个正数的数有两个,它们互为相反数;

绝对值等于0的数有一个,是0;

没有绝对值等于负数的数,绝对值是个非负数。 0

四、达标反馈

1. 填空

(1) 数轴上离开原点2个单位长的点所表示的数是___

(2) 数轴上到原点的距离等于1.5的点所表示的数是 ______

(3) 正数的绝对值是_________,负数的绝对值是___________, 零的绝对值是______

(4) 从数轴上看,一个数的绝对值就是表示这个数离开原点的________

(5) 49是______的相反数,它是_______的绝对值

(6) 如果一个数的绝对值等于 ,那么这个数是________

(7) 绝对值小于3的整数有___,它们的和为___

(8) 若 =0,则a_____0

2.选择题

⑴ - 是一个

A.正数 B.负数 C.正数或零 D.负数或零

⑵ 如果一个数的绝对值是5.2 ,那么这个数是

A.5.2 B.一5.2 C.5.2或-5.2 D.以上都不对

⑶ 任何有理数的绝对值都是

A.正数 B.负数 C.有理数 D.正数或零

⑷ 一个数的绝对值是它本身,那么这个数是

A.正数 B.正数或零 C.零 D.有理数

五、学习小结:

1、 绝对值的概念、意义

① 数轴上的点到原点的距离叫做这个点表示的有理数的绝对值

② 正数的绝对值是它的本身

负数的绝对值是它的相反数

0的绝对值是0

③ = =

④ 绝对值是非负数 0

⑤ 有理数可理解为由性质符号和绝对值组成

⑥ 互为相反数的两个数可理解为符号相反、绝对值相同的两个数

2、 学会发现、探索、合作交流,体会数形结合,分类讨论等数学思想方法

六、设计理念:

绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义。通过想一想,议一议,做一做,试一试,练一练等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。

绝对值教案 篇3

教学目标

1.了解绝对值的概念,会求有理数的绝对值;

2.会利用绝对值比较两个负数的大小;

3.在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力。

教学建议

一、重点、难点分析

绝对值概念既是本节的教学重点又是教学难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有

教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。

二、知识结构

绝对值的定义

绝对值的表示方法

用绝对值比较有理数的大小

三、教法建议

用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的。初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即

在教学中,只能突出一种定义,否则容易引起混乱。可以把利用数轴给出的定义作为绝对值的一种直观解释。

此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数。“非负数”的概念视学生的情况,逐步渗透,逐步提出。

四、有关绝对值的一些内容

1.绝对值的代数定义

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。

2.绝对值的几何定义

在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值。

3.绝对值的主要性质

(2)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零。

(4)两个相反数的绝对值相等。

五、运用绝对值比较有理数的大小

1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小。

比较两个负数的方法步骤是:

(1)先分别求出两个负数的绝对值;

(2)比较这两个绝对值的大小;

(3)根据“两个负数,绝对值大的反而小”作出正确的判断。

2.两个正数大小的比较,与小学学习的方法一致,绝对值大的较大。

教学设计示例

绝对值(一)

一、素质教育目标

(一)知识教学点

1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念。

2.给出一个数,能求它的绝对值。

(二)能力训练点

在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力。

(三)德育渗透点

1.通过解释绝对值的几何意义,渗透数形结合的思想。

2.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。

(四)美育渗透点

通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美。

二、学法引导

1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律。

2.学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)

三、重点、难点、疑点及解决办法

1.重点:给出一个数会求出它的绝对值。

2.难点:绝对值的几何意义,代数定义的导出。

3.疑点:负数的绝对值是它的相反数。

绝对值教案 篇4

导学目标

1、借助数轴,初步理解绝对值的概念,能求一个数的绝 对值,会利用绝对值比较两个负数的大小。

2、通过应用绝对值解决实际问题绝对值的意义和作用。

导学重点:

正确理解绝对值的概念?

导学难点:

负数大小比较??

导学过程

温故:

1、下列各数中:

+7,—2, ,—8?3,0,+0?01,— ,1 ,哪些是正数?哪些是负数?哪些是非负数?

2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数:

—3,4,0,3,—1?5,—4, ,2?

链接:

问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点?

知新:

1、什么叫绝对值?

在数轴上,一个数所对应的点与 的 叫做这个 数的绝对值.例如+5的绝对值等于5,记作+5=5 ;—3的绝对值等于3,记作 。

2、绝对值的特点有哪些?

(1)一个正数的绝对值是 ;例如,4= , +7。1 = 。

(2)一个负数的绝对值是 ;例如,-2= ,-5。2= 。

(3)0的绝对值是 .

容易看出,两个互为相反数的数的绝对值 .如—5=+5=5.

练一练:1。已知| |=5,求 的值。

2、填空:

(1)+3的符号是_____,绝对值是_ _____;(2)—3的符号是_____,绝对值是______;

(3)— 的符号是____,绝对值是______;(4)10—5的符号是_____,绝对值是______?

3、填空:

(1)符号是+号,绝对值是7的数是________;(2)符号是—号,绝对值是7的数是________; (3)符号是—号,绝对值是0?35的 数是________;(4)符号是+号,绝对值是1 的数 是________;

4、(1)绝对值是 的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?

(3)有没有绝对值是—2的数?

3。理解:

若用a表示一个数,当a 是正数时可以表示成a>0,当a是负数时可以表示成a<0,这样,上面的绝对值的特点可用用符号语言可表示为:

(1) 如果a>0,那么a=a;

(2) 如果a<0,那么a=-a;

(3) 如果a=0,那么a =0。

4。 比较两个负数的大小

由于绝对值是表示数的点到原点的距离,则离原点越远的点表示的数的绝对值越大.负数的绝对值越大,表示 这个数的点就越靠左边,因此,两个负数比较,绝对值大的反而小.

练一练: 比较 和 的大小

教学设计示例 篇5

一、重点、难点分析

绝对值概念 既是本节的教学重点又是教学难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有 。

教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。

二、知识结构

绝对值的定义 绝对值的表示方法 用绝对值比较有理数的大小

三、教法建议

用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的.初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即

在教学中,只能突出一种定义,否则容易引起混乱.可以把利用数轴给出的定义作为绝对值的一种直观解释.

此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数.“非负数”的概念视学生的情况,逐步渗透,逐步提出.

四、有关绝对值的一些内容

1.绝对值的代数定义

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.

2.绝对值的几何定义

在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值.

3.绝对值的主要性质

(2)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零.

(4)两个相反数的绝对值相等.

五、运用绝对值比较有理数的大小

1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小。

比较两个负数的方法步骤是:

(1)先分别求出两个负数的绝对值;

(2)比较这两个绝对值的大小;

(3)根据“两个负数,绝对值大的反而小”作出正确的判断.

2.两个正数大小的比较,与小学学习的方法一致,绝对值大的较大.

七年级数学绝对值教案 篇6

导学目标

1、借助数轴,初步理解绝对值的概念,能求一个数的绝 对值,会利用绝对值比较两个负数的大小。

2、通过应用绝对值解决实际问题绝对值的意义和作用。

导学重点:

正确理解绝对值的概念?

导学难点:

负数大小比较??

导学过程

温故:

1、下列各数中:

+7,—2, ,—8?3,0,+0?01,— ,1 ,哪些是正数?哪些是负数?哪些是非负数?

2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数:

—3,4,0,3,—1?5,—4, ,2?

链接:

问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点?

知新:

1、什么叫绝对值?

在数轴上,一个数所对应的点与 的 叫做这个 数的绝对值.例如+5的绝对值等于5,记作+5=5 ;—3的绝对值等于3,记作 。

2、绝对值的`特点有哪些?

(1)一个正数的绝对值是 ;例如,4= , +7。1 = 。

(2)一个负数的绝对值是 ;例如,-2= ,-5。2= 。

(3)0的绝对值是 .

容易看出,两个互为相反数的数的绝对值 。如—5=+5=5。

练一练:1。已知| |=5,求 的值。

2、填空:

(1)+3的符号是_____,绝对值是_ _____;(2)—3的符号是_____,绝对值是______;

(3)— 的符号是____,绝对值是______;(4)10—5的符号是_____,绝对值是______?

3、填空:

(1)符号是+号,绝对值是7的数是________;(2)符号是—号,绝对值是7的数是________; (3)符号是—号,绝对值是0?35的 数是________;(4)符号是+号,绝对值是1 的数 是________;

4、(1)绝对值是 的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?

(3)有没有绝对值是—2的数?

3。理解:

若用a表示一个数,当a 是正数时可以表示成a>0,当a是负数时可以表示成a<0,这样,上面的绝对值的特点可用用符号语言可表示为:

(1) 如果a>0,那么a=a;

(2) 如果a<0,那么a=-a;

(3) 如果a=0,那么a =0。

4。 比较两个负数的大小

由于绝对值是表示数的点到原点的距离,则离原点越远的点表示的数的绝对值越大。负数的绝对值越大,表示 这个数的点就越靠左边,因此,两个负数比较,绝对值大的反而小。

练一练: 比较 和 的大小

七年级数学《绝对值》教案 篇7

教学目标

1.了解绝对值的概念,会求有理数的绝对值;

2.会利用绝对值比较两个负数的大小;

3.在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力.教学建议

一、重点、难点分析

绝对值概念既是本节的教学重点又是教学难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有 。

教材上绝对值的'定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。

二、知识结构

绝对值的定义 绝对值的表示方法 用绝对值比较有理数的大小

三、教法建议

用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的.初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即

在教学中,只能突出一种定义,否则容易引起混乱.可以把利用数轴给出的定义作为绝对值的一种直观解释.

此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数.“非负数”的概念视学生的情况,逐步渗透,逐步提出.

四、有关绝对值的一些内容

1.绝对值的代数定义

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.

2.绝对值的几何定义

在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值.

3.绝对值的主要性质

(2)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零.

(4)两个相反数的绝对值相等.

五、运用绝对值比较有理数的大小

1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小。

比较两个负数的方法步骤是:

(1)先分别求出两个负数的绝对值;

(2)比较这两个绝对值的大小;

(3)根据“两个负数,绝对值大的反而小”作出正确的判断.

七年级数学《绝对值》教案 篇8

教学目标

1、了解绝对值的概念,会求有理数的绝对值;

2、会利用绝对值比较两个负数的大小;

3、在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力。

教学建议

一、重点、难点分析

绝对值概念既是本节的教学重点又是教学难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。

教材上绝对值的定义是从几何角度给出的。,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。

二、知识结构

绝对值的定义;

绝对值的表示方法;

用绝对值比较有理数的大小。

三、教法建议

用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即在教学中,只能突出一种定义,否则容易引起混乱。可以把利用数轴给出的定义作为绝对值的一种直观解释。

此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数。“非负数”的概念视学生的情况,逐步渗透,逐步提出。

四、有关绝对值的一些内容

1。绝对值的代数定义

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。

2。绝对值的几何定义

在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值。

3。绝对值的主要性质

(2)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零。

(4)两个相反数的绝对值相等。

五、运用绝对值比较有理数的大小

1、两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小。

比较两个负数的方法步骤是:

(1)先分别求出两个负数的绝对值;

(2)比较这两个绝对值的大小;

(3)根据“两个负数,绝对值大的反而小”作出正确的判断。

2、两个正数大小的比较,与小学学习的方法一致,绝对值大的较大。