数学《平行四边形的面积》教案优秀12篇
作为一位兢兢业业的人民教师,就不得不需要编写教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使 你知道什么样的教学设计才能切实有效地帮助到我们吗?如下是敬业的小编沧海红颜帮家人们整理的12篇平行四边形的面积教学设计的相关文章,希望对大家有所启发。
平行四边形的面积大单元教学设计(精 篇1
1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。
2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。
3、过程与方法:通过观察、操作、测量、思考、讨论交流、小组合作等数学活动,体会转化等数学方法,发展推理能力。
4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。
1、重点:平行四边形面积公式的推导及应用。
2、难点:理解平行四边形面积计算公式的推导过程。
平行四边形纸片、剪刀及电脑课件、
一、创设情境,导入新课
猪八戒和孙悟空西天取经回来后,就回到高老庄种起地来,可是孙悟空的地在猪八戒家的旁边,猪八戒的地却在孙悟空家的旁边,它们都觉得干活时很不方便。于是它们商量把地换一下。可是孙悟空的菜地是长方形的,猪八戒的菜地是平行四边形的,它们()都在想这样交换公平吗?同学们,你们说这样交换公平吗?我们怎样才能知道这样交换是否公平呢?
生:算出这两块地的面积,比比就知道了。
师:那长方形的面积怎么算呢?
生:长方形的面积=长×宽
师:平行四边形的面积怎么算呢?
生摇摇头。
师:那你们想学吗?这节课我们就一起来研究平行四边形的面积。(板书课题)
齐读学习目标:
1、通过操作,能推导出平行四边形的面积计算公式。
2、会运用平行四边形的面积计算公式解决实际问题。
二、自主学习
在下面的方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。)
小组讨论:
(1)仔细观察、比较表格中的数据,你发现了
(2)猜想:平行四边形的面积=_________________________
三、动手操作,验证猜想
(1)小组讨论:能不能将平行四边形转化成长方形来计算?该怎样转化?(把平行四边形转化成长方形或正方形,必需沿着平行四边形的高剪)
(2)以小组为单位进行剪拼。
(3)指学生演示平行四边形转化成长方形的过程,并观看电脑演示过程。
(4)讨论:
a、平行四边形转化成长方形后面积变了吗?为什么?(没有,因为它的大小没变),(物体的表面或封闭图形的大小,叫做它们的面积)
b、转化成的长方形的长相当于原平行四边形的(),转化成的长方形的相当于原平行四边形的()。
(5)交流汇报
板书:长方形的面积=长×宽
↓↓↓
平行四边形的面积=底×高
师:如果用字母s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成s=a×h,也可以写成s=ah或s=ah(师板书)
四、当堂检测
1、师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,那现在你们会利用公式解决问题了吗?
出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?
学生独立完成,并展示学生作业。
2、计算下面平行四边形面积,列式正确的是:()
a:8×3b:8×6c:4×6d:4×3
通过做此题,你想提醒大家注意什么?
3、你能想办法求出下面这个平行四边形的面积吗?
平行四边形的面积教学设计 篇2
[教学目标]
1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;
3、情感目标:通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。
[教学重点、难点]
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
[教具、学具准备]
多媒体课件、长方行纸、平行四边形纸、剪刀、三角板等。
[教学过程]
一、复习旧知,导入新课。
1、让学生回顾以前学习了哪些平面图形。(学习了长方形、正方形、平行四边形、三角形、梯形。)老师根据学生的回答,依次出示相应的图形。
2、老师总结多边形的概念,并让学生回答长方形、正方形的面积公式。
师板书:长方形的面积=长×宽
师:由于正方形是特殊的长方形,所以正方形的面积公式也可以归入到长方形的面积公式里面去。到目前为止,我们已经会求长方形、正方形的面积,但还有平行四边形、三角形、梯形的面积不会求。今天,我们就来继续学习多边形面积的计算。
二、动手实践,探究发现。
1、剪拼图形,渗透转化。
(1)小组研究
老师提出要求,让学生们以小组为单位,利用桌上的材料剪拼成一个平行四边形。
(2)汇报结果
第一种是把长方形关剪成了一个三角形和一个梯形,然后拼成一个平行四边行;第二种是把长方形剪成了两个三角形,然后拼成一个平行四边形;第三种是把长方形剪成了两个梯形,然后拼成一个平行四边形。
板节课题:平行四边形面积计算
2、动手实践,探究发现。
(1)老师提出新的要求,让学生以组为单位从这三种方法中任选一种重新剪拼,并思考:把长方形转化成平行四边形,什么变了,什么没变?根据长方形与转化后的平行四边形的联系,又能有什么发现?
(2)学生重新剪拼,互相探讨。
(3)汇报讨论结果。
师板书:平行四边形的面积=底×高
(4)让学生齐读:平行四边形的面积等于底乘以高。
(5)让学生明白如果要计算平行四边形的面积,必须知道哪些条件?
(必须知道平行四边形的底和高)
课件展示讨论题:平行四边形的底和高是否相对应。
(6)总结平行四边形面积的字母代表公式:S=ah (师板书S=ah)
(7)比较研究方法。
三、分层训练,理解内化。
课件显示练习题
第一层:基本练习
第二层:综合练习
第三层:扩展练习
下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?
四、课堂小结,巩固新知
小结:这节课我们学习了什么?你学会了什么?
附说课稿:
一、 教材与与学情分析
《平行四边形的面积》是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》中的内容。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形面积的计算公式,理解平行四边形特征的基础上进行教学的。
小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
教学目标:
1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;
3、情感目标:通过自评、互评,引导学生学会欣赏别人,认识自己;通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。
教学重点、难点:
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
教具、学具准备:
多媒体课件、长方形纸、剪刀、直尺、
二、理念设计:
1、运用信息技术手段,优化数学课堂教学。
2、体现“数学从生活中来,再回到生活中去”。
3、构建一个以学生情感、思维、动作三维参与的“主动参与式”课堂教学模式。
三、教法、学法
教法:运用迁移规律,体现“温故知新”的教学思想;组织丰富活动, 引导学生自主探究;发挥多媒体优势, 促进多项互动生成。
学法:培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。
四、教学程序
为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,结合本班学生特点,设计如下环节。
(一)复习旧知,导入新课。
新课开始,我先让学生回忆已经学过的平面图形,让学生进行反馈,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。
(二)动手实践,探究发现。
1、剪拼图形,渗透转化。
心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。学生只有具备了较强的动手操作能力,才能充分感知和建立表象,为分析和解决问题创造良好的条件。
教材的编排意图是通过数格子的方法,让学生观察到平行四边形的面积与长方形的面积相等,并且通过剪拼的方法将平行四边形转化成长方形,让学生通过长方形的面积公式推导出平行四边形的面积公式。而我设计的是首先让学生展开丰富的想象,动手操作将长方形剪拼成平行四边形,(在这里学生充分的发挥了想象,想出了多种拼组方法:有的将长方形剪成了一个三角形和一个梯形;有的剪成了两个三角形;有的剪成了两个梯形),从而感知图形之间的关系,建立表象。
2、动手实践,探究发现。
在这个环节中,我再次让学生开展小组探究活动,并提出更明确的要求,让学生从刚才的发现中任选一种重新剪拼,思考当长方形转化成平行四边形,什么变了,什么没变?你还能有什么发现?知识的再现将引导学生更深入的观察与思考,通过上面问题的思考,学生将对平行四边形公式的推导有了更深的认识,进一步认识到拼成的平行四边形的底相当于长方形的长,拼成的平行四边形的高相当于原来长方形的宽,平行四边形的面积就等于长方形的面积,从而推导出平行四边形的面积=底×高。这个环节让学生主动经历探索结论的过程,让他们一次次获得新的发现的喜悦,使思维始终处于激活的状态。
当学生已经推导出平行四边形面积公式后,引导学生认真看教材中的研究方法,进一步开阔学生的思维,让学生知道探究数学的研究方法是多种多样的,培养了他们的探究意识。
(三)分层训练,理解内化。
对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计三个层次的练习题:
第一层:基本练习:
计算面积,有利于学生加深对图形的认识,正确分清平行四边形底和高的关系。
第二层:综合练习:
通过不同的高引起学生的混淆,在计算中让学生明确在计算平行四边形面积时底要找出与它相对应的高,这样才能准确求出平行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。
第三层:扩展练习:
1、下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?
学生综合运用知识,进行逻辑推理,明白平行四边形的面积只与底和高有关,等底同高的平行四边形的面积相等。
2、把平行四边形模型拉近,它们的面积发生变化了吗?
通过这个过程的操作,让学生明白当一个平行四边形的周长一定时,越拉近它的面积就越小。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
(四)课堂小结,巩固新知
小结:这节课我们学习了什么?你学会了什么?
有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。
本节课以探究为核心,以活动为主线,以学生为主体,自悟加引导,学生的自主探究活动始终贯穿于整个课堂。通过活动,学生“学数学、做数学、用数学”,学生的能力在活动中得到了发展,知识体系的建构也就顺理成章,水到渠成,教学自然能取得较好的效果。
当然,课堂教学艺术的追求是无限的,这节课也有需要进一步完善的地方,真诚地希望各位老师提出宝贵意见。在今后的教学中,我会继续研究,相信只要努力了,我的课堂教学艺术将会越来越完美。
平行四边形面积的教学设计 篇3
教学目标
1、知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。
2、能力目标:在数方格、剪拼图形中发展空间观念;初步感知等积转化的思想方法,提高解决问题的能力。
3、过程与方法目标:通过实践――感性认识――理性认识――实践应用的辩证唯物主义思想方法教学,培养小组合作学习、交流、评价的意识。
4、情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系,使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。
教材分析重点:
使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形的底和高的关系。
难点:
平行四边形面积公式的推导过程。
教具:
1、多媒体计算机及课件;
2、每个学生3张平行四边形硬纸片及剪刀一把、尺子。
教学过程
一、质疑引新:
1、(电脑出示长方形)这图形你认识吗?长方形面积公式是怎样的?[板书:长方形的面积=长×宽]
(出示平行四边形)这又是什么图形?指出平行四边形的底和高?
2、谈话引入:你想知道你所做的平行四边形面积有多大吗?
[板书课题:平行四边形的面积]——请同学们打开课本69页。
二、引导探求:
㈠提出问题:
1、用数方格法求平行四边形的面积
⑴谈话:我们以前研究长方形面积计算的时候,用到了数方格的方法,今天为了研究平行四边形面积的计算,我们也可以用数方格的方法。请同学们看屏幕(微机显示教材P69图)。
⑵数出方格图中平行四边形的面积。提问:
A、师:每个方格代表多大的面积?(电脑闪烁小方格,并在学生齐答后显示“1平方厘米”图例)
B、指名来数一数,这个长方形的'面积是多少平方厘米?平行四边形的面积是多少平方厘米?
⑶若以下面的这条�
1平方厘米
3、比较两个图形的关系(电脑同时显示图)请大家仔细观察上面二个图形,比较平行四边形的底和长方形的长,平行四边形的高和长方形的宽,大家发现了什么?再请大家看看它们的面积呢?
电脑逐步显示:平行四边形的面积=长方形的面积。
平行四边形的底=长方形的长;
平行四边形的高=长方形的宽;
引导学生猜想“平行四边形的面积与它的什么有关?”到底对不对?我们用数方格的方法算出平等四边形的面积,�
(2)底、高改变,面积变化。
你们的猜想正确,平行四边形的面积大小与它的底和高有关,如果给你一个平行四边形,你能想办法算出它的面积吗?
㈡推导公式:
1、小组合作研究:
长方形的面积是长乘以宽,那么能不能想个办法将平行四边形转化成长方形,进而用公式来计算呢?下面我们来做个实验,四人小组合作请同学们拿出1个平行四边形纸片及剪刀,以学习小组合作为形式,一人动手,三人留意看,并请同学们在剪拼的过程中,思考以下二个问题:(显示)
⑴怎样剪拼才能将平行四边形转化成长方形?
⑵转化后的图形与原平行四边形有什么关系?
(要求:比一比,看一看,哪一个小组最能干,拼得又对又快?)
2、各小组实验操作,教师巡视指导。
3、各小组交流实验情况:
⑴谁愿意把你的转化方法说给大家听呢?请上台来交流!
⑵有没有不同的剪拼方法?(继续请同学演示)。
⑶电脑演示各种转化方法。
4、小组合作讨论归纳总结规律:
⑴平行四边形剪拼成长方形后,什么变了?什么没变?
⑵剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?
⑶剪样成的图形面积怎样计算?
⑷小组上台汇报,指着图形说一次得出:
因为:长方形的面积=长×宽
所以:平行四边形的面积=底×高(同位指着图形说)
7、自学字母公式:记文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作“.”,也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。
㈢巩固公式:
1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪些条件?(平行四边形的底和相对应的高)
㈣应用解决:
1、自学教材P70例题
下面让我们用公式来解决一些实际问题。电脑显示:“一块平行四边形菜地(如下图),它的底长32.6米,高8.4米,它的面积是多少?(得数保留整平方米)
板书:32.6×8.4≈274(平方米)
答:它的面积约是274平方米。
(挑一学生的作业投影评讲)
《平行四边形的面积》教学设计 篇4
教学内容:平行四边形的面积
教学目标:
通过看一看、剪一剪、拼一拼、比一比、算一算,使学生理解并掌握平行四边形的面积公式,并能进行简单的平行四边形的面积计算。
教学过程:
一、看一看:得出平行四边形与长方形的关系。
1、 让生看P69,观察方格纸上的长方形和平行四边形,并填写:
每个小方格代表1平方厘米(不满一格的,都按半格计算),数一数,长方形的面积是( )平方厘米;平行四边形的面积是( )平方厘米。
2、 观察并讨论:这个长方形和平行四边形有怎样的关系?
在学生讨论、回答的基础上小结得出:长方形的长和平行四边形的底相等,长方形的高和平行四边形的高相等。
二、剪一剪、拼一拼、比一比、算一算,得出平行四边形的面积公式。
1、 出示:平行四边形,请你想想办法,怎样求它的面积。(让生每人先准备两个平行四边形)
2、 让生小组讨论,尝试。
3、 检查学生讨论的结果。如果有学生想出,让他到讲台上给其他同学介绍。
(1)沿着平行四边形的一条高,剪下来,移到右边拼拼。
(2)比一比:这两个图形有什么关系?什么变了,什么没变?
这两个图形形状变了,但面积相等
(3)、请你量一量长方形的长与宽,算出它的面积。
(4)、根据刚才的学习,你能不能得到这个平行四边形的面积?那么你能不能得出平行四边形面积的计算公式,你是怎么想出来的?
4、 总结得出
长方形的面积=长 × 宽
平行四边形的面积=底 × 高
如果用S表示平行四边形的面积,用A和H分别表示平行四边形的底和高,那么,平行四边形的面积计算公式可以写成:
S=ah
5、 例:有一块平行四边形的草地,底是18米,高是10米,这块草地的面积是多少?
(1) 让生独立做。
(2) 检查:18×10=18(平方米)
(3) 注意:面积单位。
6、 看书,质疑。
三、练习
1、 口算下面每个平行四边形的面积。
底(厘米)
50
12.5
100
9
高(厘米)
40
8
36.4
4
面积(平方厘米)
2、计算下面平行四边形的面积。
12米
24米 40厘米 15米
25米
50厘米
3、 有一块平行四边形的玻璃,底48厘米,高36厘米,它的面积是多少平方厘米?
4、 有一块平行四边形的菜地,底120米,高比底少40米,这块地的面积是多少?
四、总结。
五、课堂作业
P71 5
五年级上册平行四边形的面积教学设计范文(通用5 篇5
教学目标:
1.掌握平行四边形的面积计算公式,并运用平行四边形的面积计算公式解决实际问题。
2.通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3.在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。
教学重点:
掌握平行四边形的面积计算公式,能运用公式解决实际问题。
教学难点:
理解平行四边形面积计算公式的推导方法与过程。
教学准备:
平行四边形、学习单等。
教学过程:
课前布置预习第87,88页内容,完成预习单(如下图)。
一、创设情境,导入新课。
1.课前交流与小故事
师:同学们,今天我们班上来了非常多的老师听课,你们的心情怎么样呢?
生紧张,激动……
师:同学们,你们知道曹冲称象的故事吗?谁来说一说?
生:古时候有一个叫曹冲的人看到一群人围着一头大象,没有办法把它称重。曹冲想了一个办法,先把大象赶到船上,然后做好标记,再把石头装入船上到了刚刚大象称的刻度,那石头的重量就是转化成了大象的重量。
师:说的非常好,讲的非常详细,小小老师。对,曹冲称象其实就是把大象的重量转化成了石头的重量。转化是数学中非常重要的数学思想,转化就是把我们没有学过的转化成学过的,把复杂的转化成简单的,今天我们也来学习关于转化的数学问题。
师:同学们,看老师手上拿着的是什么图形呢?
生:长方形
师:对。长方形,那它的面积是指哪一部分呢?请一名学生上来指一指、画一画。它的面积计算公式呢?
生:表面的大小,面积计算公式是长乘宽。
师:对。说的很好,长方形的面积等于长乘宽。那现在老师手上拿着的又是什么图形呢?
生:平行四边形
师:平行四边形的面积怎么计算呢?今天我们就一起来学习探究平行四边形的面积。(板书:平行四边形的面积)
五年级《平行四边形面积》教学设计 篇6
教学目标
1、经历动手操作、讨论、归纳等探索平行四边形面积公式的过程。
2、掌握平行四边形的面积公式,并用字母表示;会用公式计算平行四边形的面积。
3、在探索平行四边形面积公式的过程中,感受转化的数学思想,感受面积公式推地过程的条理性和数学结论的确定性。
教学重点
掌握并会用公式计算平形四边形的面积。
教学难点
利用转化的数学思想和方法来探索平形四边形面积公式
教学教程:
一、创设情境,引出问题
同学们,老师给你们带来了老朋友,看还认识它们吗?(课件出示长方形、正方形、平行四边形的平面图形,学生识图)
那长方形和正方形的面积与什么有关,怎么计算呢?(学生回答)
平行四边形的面积你会计算吗?它可能与什么有关系呢?(学生猜想)
今天我们就来研究平行四边形的面积公式
二、自主探究,动手操作
1、出示要求
把平行四边形的纸片剪一刀,然后拼成一个长方形。
2、学生动手操作,教师深入学生当中观察指导
3、汇报会交流。
生1:做平行四边形的高,沿着高剪下来,把左边的放在右这拼在一起,就拼成了一个长方形。
生2:我是沉着这个顶点向下做的高,剪下来的三角形放在了右边,拼成了一个平行四边形。
师:要拼成一个长方形要怎么做才能办到呢?
生:只要沿着平行四边形的一条高剪开,就可以拼成一个长方形。
师:对,只要沿着平行四边形的一条高剪开,再平移就可以拼成一个长方形。
4、议一议:平行四边形和拼出的长方形有什么关系呢?
生1:拼成的长方形的长是平行四边形的底,长方形的高是平行四边形的高。
生2:拼成的平行四边形的面积和长方形的面积想等。
师:那谁来总结一下平行四边形的面积公式。
生:因为长方形的面积等于长乘宽,拼成的长方形的长是平行四边形的底,长方形的高是平行四边形的高。所以平行四边形的面积等于底乘高(指多名同学叙述,教师并随机板书)
5、教师在平行四边形上标出a、h,说明分别表示底和高,用S表示面积,让学生写出字母公式。
生:S=a×h
过渡:刚才通过同学们探索出了平行四边形的面积公式,你们是否会运用了,下面做一下闯关训练。
三、巩固训练,拓展延伸
1、试一试,计算平行四边形的面积。让学生先说一说图上的数据都表示什么,再试着计算。
2、练一练第1题。指名读题,独立完成。
3、问题讨论。提出问题:下图中的两个平行四边形的面积相等吗?为什么?先小组讨论再汇报。
生:两个图形的面积相等,因为它们的底一样,高也相等。
生:平行四边形的面积等于底乘高,它们的底都是2、6,高都是1、8,所以面积相等。
师:也就是说,等底等高的平行四边形的面积想等。
四、课堂小结
通过本节课的学习,你有哪些收获?
五、布置作业
1、完成57页第2、3题
2、课下自做一个活动的平行四边形木条框。测量它的底和高,求出它的面积。拉一拉,观察平行四边形的底和高是否发生变化,测量并计算它的面积。
五年级《平行四边形面积》教学设计 篇7
教学目标:
(1)引导学生在探究、理解的基础上,掌握面积计算公式,体验其推导过程。能正确计算平行四边形面积。
(2)通过对图形的观察、比较和动手操作,发展学生的空间观念,渗透转化和平移的思想。
(3)在数学活动中,激发学生学习兴趣,培养探究的精神,让学生感受数学与生活的密切联系。
教学重点:
理解并掌握平行四边形的面积计算公式,并能用公式解决实际问题。
教学难点:
理解平行四边形的面积公式的推导过程。
教具、学具准备:
课件、长方形和平行四边形图片、剪刀、平行四边形框架等。
教学过程:
一、创设情境、导入新课。
大家请看大屏幕(欣赏绥滨农场风景图片),我们学校门口有两个花坛,小明认为长方形的花坛大,而小刚认为平行四边形的花坛大,谁说的对呢?你想来帮他们评判一下吗?(想)
� 面积我们会求,那平行四边形的面积我们怎样求呢?这节课,我们就共同来探讨平行四边形的面积。(板书课题)
出示长方形和平行四边形教具,引导学生观察后说一说长方形和平行四边形的各部分名称。长方形与平行四边形有什么区别呢?(引导学生说出长方形四个角都是直角)(板书各部分名称,标注直角符号。)请大家回忆一下,我们以前学长方形面积公式时用过什么方法来求面积,谁来说一说?我们用过数方格的方式求过长方形和正方形的面积。那我们能不能也用数方格的方式求平行四边形的面积呢?(课件演示)
二、自主探究,合作验证
探究一:用数方格的的方法探究平行四边形的面积。
请大家打开你们的百宝箱(学具袋),里面有老师把两个花坛按比例缩小成的两张卡片,自己判断一下能不能用数方格的方法来求平行四边形的面积,认真按提示填表。出示温馨提示:
①在两个图形上数一数方格的数量,然后填写下表。(一个方格代表1㎡,不满一格的都按半格计算。)教师强调半个格的意思。
② 填完表后,同学们相互议一议,并谈一谈发现。
你是怎么数的?你有什么发现吗?能猜测一下平行四边形的面积公式是什么吗?(学生汇报)
探究二:用割补的方法来验证猜测。
小明和小刚通过数格子后和我们有了一样的猜测,但为了证实自己的猜测的正确性,想验证一下。同时也想总结出平行四边形的面积公式。你想参与吗?学生小组讨论。(鼓励学生尽量想办法,办法不唯一。)
我们已经会求哪几种图形的面积了?(预设:学生回答会求长方形和正方形的面积),接着小组合作:大家想想办法,试试能不能把平行四边形转化成我们学过的图形,然后在求它的面积呢?请大家拿起你的小剪刀试试看吧!出示合作探究提纲:(出示教学课件)
(1)用剪刀将平行四边形转化成我们学过的其他图形。(剪的次数越少越好。)
(2)剪完后试一试能拼成什么图形?
师:你转化成什么图形了?你能说一说转化过程吗?转化后的图形和平行四边形各部分是什么关系?下面我们回顾一下我们的发现过程(大屏幕出示):
三、运用新知,练中发现
1、基本练习
(1)口算下面各平行四边形的面积
A、底12米,高3米:
B、高 4米,底9米;
C、底36米,高1米
通过这组练习,你有什么发现吗?(教学课件)
发现一:发现面积相等的平行四边形,不一定等底等高。
(2)画平行四边形比赛(大屏幕出示比赛规则)
比赛规则:
1、拿出百宝箱中的方格纸。在方格纸上的两条平行线间,画底为六个格(底固定),看能画出多少个平行四边形。
2、谁在一分钟之内画的多,谁就获胜。学生画完后(用实物展示台展示,引导学生发现)
发现二:
1.发现只要等底等高,平行四边形面积就一定相等。
2.等底等高的平行四边形,形状不一定完全相同。
四、总结收获,拓展延伸
1、通过这节课的学习,你知道了什么?
2、小明和小刚学完这节课后把他们的收获写了下来,你们想知道是什么吗?
大屏幕出示(教学课件演示)
平行四边形,特点记心中。
面积同样大,形状可不同。
等底又等高,面积准相同。
要是求面积,底高来相乘。
(齐读) 希望同学们也要向小明和小刚一样,经常把学过的知识进行总结,做一个学习上的有心人。
拓展延伸
请大家看老师的演示。(用平行四边形框架演示由长方形拉成平行四边形)。如果把长方形拉成平行四边形,周长和面积有没有变化呢?课后我们可以小组合作,亲自动手做实验进行研究,并把发现记录下来,作为今天的作业。
《平行四边形的面积》教学设计 篇8
一、教学目标:
1. 使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2. 通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
二、教学重点、难点:
教学重点:平行四边形的面积的计算
教学难点:平行四边形的面积公式的推导过程
三、教具准备:课件、方格纸、信封、平行四边形若干个
四、学具准备:平行四边形四个,三角板,直尺,剪刀。
五、教学过程:
一、导入:
1.看点猜图形:
师:顾老师想考考大家的眼力。请看大屏幕。(出示一幅格子图淡、细;四个点依次闪烁出示)
师:如果把刚才的四个点依次相连,谁知道能组成什么图形?(问两个同学,大家都同意吗?)
2.说一说底和高:
师:看来你们都有一双火眼金睛。如果顾老师告诉你们,每一个小正方形的面积都是1平方厘米。那么这个平行四边形,底有几厘米,高有几厘米?[课件里出示,底( )厘米,高( )厘米]
3.导入新课:
师:早在上学期我们已经认识了平行四边形。今天这节课,我们继续研究平行四边形的有关知识。[板书:平行四边形]
二、新授:
(一)操作猜想
1.利用格子图画平行四边形,并说明底和高:
(1)师:同学们的手上都有这样一幅格子图,你能在上面像顾老师这样画一个平行四边形吗?(学生回答:能)画完以后,请你数一数底有几厘米,高有几厘米。(学生试画。)
(2)师:都画完的吗?请哪位同学上台展示自己的作品?(挑两个同学的作品上台展示。分别问生:你的底有几厘米,高有几厘米?对的打上勾)
2.利用格子图,数面积
(1)一起数。
师:大家继续看大屏幕。我们已经知道屏幕上的平行四边形,底是5厘米,高是3厘米。那你能数出它的面积有几平方厘米吗?……让我们一起看着大屏幕数一数。(先数出整格的,一块块点击,并显示红色。当数到不是满格的时候,停顿……也就是说这边的这个图形可以与那边那个拼成一格。是的,有些图形可以拼起来数。)
(2)独立数后同桌互查。
师:会数了吗?(生回答:会)请你反自己刚才自己画的平行四边形数一数,并把数出来的面积,填在图下面的括号里。
(生独立数,师巡视给予关注)
师:数完了吗?请同桌互相检查一下。(生互相检查)
(3)观察数据,交流发现。
师:请同学们观察一下你记录在图下面的三个数据,你有什么发现?(停顿稍许,等有学生一一举手了)把你的想法在四人小组里交流一下,看一下别人想的跟你是否是一样的?(四人小组交流)
师:请哪位同学代表小组汇报一下。(抽一生)说一说你的发现。(生:底和高乘在一起就是面积)(板书:平行四边形面积=底×高)你能用数据说明一下吗?(我的平行四边形,底是*,高是*,面积正好是它们的积*)
师:(另抽一生)你发现的结果跟他的一样吗?(一样)你是以哪些数据来证明的?(生回答后师评价)你的发现很有根据!
师:这些同学都发现了这个关系:底乘高等于面积。有没有不一样的?
(4)小结:
师:刚才同学们通过画图、数方格、观察等方法,发现平行四边形的底、高和面积之间有这样的关系。
(二)转化验证:
1.猜想:
师:如果屏幕中的图形去掉方格图(去掉屏幕中的方格图),你的图形中的方格图也去掉,底和高之间还会有这样的关系吗?(有些学生有有,有学生则漠然)
师:看大家的反应,我们有必要对这样的关系进行更进一步的验证。
2.验证:
(1)猜想将平行四边形变什么图形。
师:(手里出示一个平行四边形)这是一个平行四边形,你能不能剪一剪,再拼一拼,把它变成一个我们已经会算面积的图形?(生静静思考一下)你说。(后抽生回答:长方形)
师:你的想像能力很好。还有谁想到了把它剪拼成一个长方形?(生一一举手)很好,有越来越多的人想到了。
(2)动手操作,剪拼成长方形。
师:那好。请同学们利用手头的工具,把这个平行四边形剪拼成一个长方形。(学生独立操作,指点几个快的同学有没有其他方法,指明按中间的高剪。)
师:(一半人已经做好)完成以后,想一想,得到的长方形与原来的平行四边形,存在着怎样的关系?
师:把自己的发现,在四人小组内交流一下。(四人小组交流)
(3)上台展示,并说发现:
师:谁愿意展示一下自己的作品(摸好底,抽二生,一人沿顶点上的高剪拼,一人沿图中间的高剪拼)
师:请你介绍一下,你是怎么想的?(……)哦原来你是这样剪的。其实你刚才在剪的时候,是沿着平行四边形的什么在剪?(高,多媒体展示)请你继续说一说,剪拼后的长方形与原来的平行四边形有什么关系?(注意启发和关注)(长方形的面积与平行四边形的面积相等;长方形的长和平行四边形的底相等;长方形的宽和平行四边形的高相等。)(板书:长、宽、长方形面积)
师:看来你跟你们小组的活动是非常有成效的。
师:还有不一样剪拼的方法吗?……(沿中间的高剪的方法)你刚才沿着剪的那条线,其实也是什么?(高)你发现的联系,跟那位同学一样吗?(一样的)谢谢,你下去吧。还有不一样的吗?(说一说)
(4)归纳:
师:刚才同学们开动脑筋,用了多种不同的方法,把平行四边形剪拼成了一个长方形,让我们为自己的成功而鼓掌。(拍手)
师:而且我们还发现了后来长方形的面积相当于平行四边形的面积(用两向箭头)。(长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高)
师:我们早就知道,长方形的面积等于长乘以宽,现在我们可以理直气壮地说,平行四边形的面积等于(底乘以高)。
师:现在我们可以说我们刚才的发现是完全正确的,是具有普遍意义的。
(5)用字母表示公式:
(屏幕出示一开始的平行四边形)
师:如果面积我们用s表示,底和高和a和h表示。你能用字母公式表示平行四边形的面积计算方法吗?(文字公式上面写一个字母公式)
师:(手指字母和文字公式)这两个公式是同学们今天需要掌握的新知识,让我们再用心地读一读。
(6)练习:
(大屏幕中的字母全部去,换上数据底6厘米,高4厘米。)
师:这个平行四边形的面积大家会算吗?请你在自己的本子上计算一下。(生独立计算,选一个快的,正确的上台板书)
师:这个6是什么?(a),4呢?(h),那么底和高求出来的是什么?(s)。你后面用的单位为什么是平方厘米呀?
师:对的举手。……写错也没有关系,待会你订正一下。
三、小结:
师:一起告诉我,今天我们新认识了什么?(板书补充:的面积)你是用什么样的方法得到平行四边形的面积计算公式的?……哦,原来都是把我们的新知识转换成旧的知识。有没有什么疑问了?那么接下来让我们运用这个计算公式,来解决一些实际的问题。
四、练习:
1.猜一猜小精灵后面藏着谁(口答)?
(1)知道底和高;
(2)知道面积和底求高;你是怎么想的?如果知道面各和高,怎么求底?
(3)知道面积和高求底。
2.出示一个平行四边形,高与底不对应,求一求面积。
不能求,为什么?
给一个条件,求一条。
3.课件,长方形。变化成一个平行四边形?今天我们学了平行四边形的面积,根据你已经有的知识,判断这两个图形谁的面积大?
说一说为什么?班内分成两派,能不能说出充分的理由说服对方
根据自己的经验;相信自己的眼睛。
小结:数学学习要根据不同的情况得出灵活的判断。
平行四边形的面积大单元教学设计(精 篇9
相交线数学说课稿
尊敬的各位评委各位老师上午好:
我今天说课的题目是《相交线》:
一:教材分析
1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时
数学《平行四边形的面积》教案优秀12篇
3、教学的重点、难点:
重点:邻补角、对顶角的概念,对顶角的性质和应用。
难点:理解对顶角性质的探索
(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。)
4、教学目标:
a:知识与技能目标
(1).理解对顶角和邻补角的概念,能在图形中辨认.
(2).掌握对顶角相等的性质和它的推证过程
(3).会用对顶角的性质进行有关的简单推理和计算.
b:过程与方法目标
(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。
(2).体会具体到抽象再到具体的思想方法.
c:情感、态度与价值目标
(1).感受图形中和谐美、对称美.
(2).感受合作交流带来的成功感,树立自信心.
(3).感受数学应用的广泛性,使学生更加热爱数学。
二、学情分析:
在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的。应用充满好奇与期待.
三、教法和学法:
教法:
叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间。根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学 相结合的方法.
学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.
四、教学过程:
1课前准备:课件,剪刀,纸片,相交线模型
2教学过程:设置以下六个环节
环节一:情景屋(创设情景,激发学习动机)
请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线
环节二:问题苑(合作交流,解释发现)
通过一些问题的设置,激发学生探究的欲望,具体操作:
(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化
(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。
(让学生充分的感知到数学来源于生活,符合初中学生的认识规律和兴趣爱好)
(3):分析研究此模型:
设置以下一系列问题:a、两直线相交构成的4个角两两相配共能组成几对?(6对)
b、对各对角进行分析,首先从位置上去分析————结论:可把这六对角分成两大类,一类为哪些角?——特点?——它们有一条公共边,它们的另一边互为反向延长线——引出概念——邻补角。
另一类是哪些角?———特点?——它们的两边互为反向延长线——引出概念——对顶角
c、再从大小上进行分析——量一量——结论:邻补角互补、对顶角相等。
d、你能阐述它们互补和相等的理由吗?
(一堂好课,是由一系列的真问题组成的,本环节在老师的引导下,由学生自由的发挥,通过观察分析,交流 讨论一步一步的解决本节课的重点和难点,学生通过自己探索获得的知识才是自己的知识,让学生在此过程中学会学习,达到教是为了不教的目的)
环节三:快乐房(大胆创设,感悟变换)
(设置见投影,让学生判断形成的两个角是否为邻补角,这一变换让学生充满兴趣,此时一定让学生用邻补角的特点去检验,达到知识的正向迁移,并理解邻补角和补角的关系)
环节四:实例库(拓展应用,升华提高)
例子1:是一组不同形式的角,判断是否为对顶角,此题的目的是巩固对顶角的概念,培养学生的识图能力
例子2:例子2是用对顶角和邻补补角的性质进行简单的计算,在这里设置了一组变式题,而且变式题目不是教师直接给出,而是启发学生自己编,让学生过了一把编导的瘾,学生一定非常的开心,这样可以活跃课堂气氛,提高学生的思维能力。
(一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算.例题放手让学生自己解决,比教师单纯地讲解效果会更好.尽管学生书写格式不如课本上的规范,但通过集体)
五年级数学《平行四边形的面积》教学设计 篇10
一、教学目标:
1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。
2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。
3、过程与方法:通过观察、操作、测量、思考、讨论交流、小组合作等数学活动,体会转化等数学方法,发展推理能力。
4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。
二、教学重点、难点及关键点剖析:
1、重点:平行四边形面积公式的推导及应用。
2、难点:理解平行四边形面积计算公式的推导过程。
三、教具、学具准备:
平行四边形纸片、剪刀及电脑课件、
四、教学过程:
一、创设情境,导入新课
猪八戒和孙悟空西天取经回来后,就回到高老庄种起地来,可是孙悟空的地在猪八戒家的旁边,猪八戒的地却在孙悟空家的旁边,它们都觉得干活时很不方便。于是它们商量把地换一下。可是孙悟空的菜地是长方形的,猪八戒的菜地是平行四边形的,它们都在想这样交换公平吗?同学们,你们说这样交换公平吗?我们怎样才能知道这样交换是否公平呢?
生:算出这两块地的面积,比比就知道了。
师:那长方形的面积怎么算呢?
生:长方形的面积=长×宽
师:平行四边形的面积怎么算呢?
生摇摇头。
师:那你们想学吗?这节课我们就一起来研究平行四边形的面积。(板书课题)
齐读学习目标:
1、通过操作,能推导出平行四边形的面积计算公式。
2、会运用平行四边形的面积计算公式解决实际问题。
二、自主学习
在下面的方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。)
小组讨论:
(1)仔细观察、比较表格中的数据,你发现了
(2)猜想:平行四边形的面积=_________________________
三、动手操作,验证猜想
(1)小组讨论:能不能将平行四边形转化成长方形来计算?该怎样转化?(把平行四边形转化成长方形或正方形,必需沿着平行四边形的高剪)
(2)以小组为单位进行剪拼。
(3)指学生演示平行四边形转化成长方形的过程,并观看电脑演示过程。
(4)讨论:
A、平行四边形转化成长方形后面积变了吗?为什么?(没有,因为它的大小没变),(物体的表面或封闭图形的大小,叫做它们的面积)
B、转化成的长方形的长相当于原平行四边形的(),转化成的长方形的相当于原平行四边形的()。
(6)交流汇报
师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a×h,也可以写成S=ah或S=ah(师板书)
四、当堂检测
1、师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,那现在你们会利用公式解决问题了吗?
出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?
学生独立完成,并展示学生作业。
2、计算下面平行四边形面积,列式正确的是:()
A:8×3B:8×6C:4×6D:4×3
通过做此题,你想提醒大家注意什么?
3、你能想办法求出下面这个平行四边形的面积吗?
五、拓展提升
下面图中两个平行四边形的面积相等吗?它们的面积各是多少?
1、4cm
2、5cm
通过做此题,你发现了什么?
六、课堂小结
说说本节课,你收获了什么?
七、板书设计:
略
五年级《平行四边形面积》教学设计 篇11
教学内容:
人教版小学数学教材五年级上册第87~88页例1及相关练习。
教学目标:
1.通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。
2.能正确地应用公式计算平行四边形的面积。
教学重点:
探索并掌握平行四边形面积计算公式。
教学难点:
理解平行四边形面积计算公式的推导过程,体会转化思想。
教学准备:
课件,一个框架式可以活动的平行四边形教具,为学生准备一张底为6 cm、高为4 cm的平行四边形纸张。
教学过程:
一、激趣引入
1.游戏。面积比大小:你能很快比较出下面每组图中阴影部分面积的大小吗?
你怎么知道它们的面积一样大的?(反馈重点:①数方格;②转化成长方形。)
2.(出示平行四边形)这个图形是?(平行四边形)。关于平行四边形,大家已经知道了哪些知识?
3.揭示课题:今天,这节课我们要来研究平行四边形的面积,谁能说说平行四边形的面积指的是哪部分呢?
【设计意图】转化的思想是推导平面图形面积计算方法的指导思想,作为本单元的起始课,通过面积比大小的游戏,让学生意识到不仅可以通过数方格来比较图形的大小,还可以通过剪拼转化成熟悉的图形进行大小比较,既富有趣味性,又能为新知的探究做好铺垫。
二、新知探究
(一)合理猜想
1.确实,由四条边围成的封闭图形的大小就是平行四边形的面积。那么同学们猜想一下,这个平行四边形的面积可能会怎么计算?并说说你的理由。
预设1:邻边相乘;
预设2:底边乘高。
2.同桌互相说一说,你同意哪一种猜想?理由是什么?
3.反馈想法。
预设1:长方形的面积是长乘宽,所以平行四边形的面积是底乘邻边。把平行四边形拉一拉就可以变成长方形。
预设2:用底边乘高来计算。可以通过剪一剪、拼一拼,把平行四边形转化为长方形,再计算面积。
(二)验证猜想
同学们都想到将平行四边形的面积转化成长方形的面积来计算,那么这两种方法有什么不同?哪种方法更合理呢?
1.邻边相乘的想法
教师:就让我们先来研究一下拉的方法。(出示教具)请看,我们再次慢慢地把原来的平行四边形拉成长方形,仔细观察拉动前后什么没有变,什么发生了变化?
学生:边的长短没变,高和面积变了。
教师追问:周长变了吗?面积变大了还是变小了?能在图上更直观地表示出来吗?
教师:现在谁能说说这种拉的方法合理吗?为什么?
教师小结:是的,在拉动前后平行四边形的面积与长方形的面积不相等。用底乘邻边算出的不是平行四边形的面积,而是拉动后的长方形的面积。所以用拉的方法计算平行四边形的面积是不正确的。
【设计意图】利用教具进行操作对比,让学生通过观察自觉修正自己的想法。
2.底边乘高的想法
(1)数格子验证
教师:这里的一些不是整格的怎么数?
学生:可以通过拼一拼,变成整格的再数。
教师:拼一拼后,就变成了什么形状?这个长方形的。长和宽分别是多少?所以面积是多少?
(2)剪拼验证
教师:谁来展示你是如何进行剪接的?
学生:沿高剪下,补到另一边,拼成长方形。
教师:拼成的是一个怎样的长方形?(长6 cm,宽4 cm)
那这个长方形的面积怎么算?(平行四边形的面积是24 cm2)。
【设计意图】让学生大胆提出假设,并让学生自主思考通过数格子、剪拼等实践操作进行验证。在操作反馈中,让他们在和同学、老师的交流过程中,展示自己的想法,完善自己的思考,对于知识的获取是很有益处的。
(三)公式推导
教师:仔细观察, 拼成的长方形的长和宽分别相当于原来的平行四边形中的哪两部分?
学生:长方形的长与平行四边形的底相等,长方形的宽与原来平行四边形的高相等。
教师:那么根据长方形的面积计算公式,平行四边形的面积该怎么计算呢?
教师:如果我们用
表示平行四边形的面积,用
表示平行四边形的底,用
表示平行四边形的高,那么平行四边形的面积计算公式可以用
来表示。
(四)回顾总结
回顾刚才的学习过程,谁能说说我们是怎样学习平行四边形的面积的计算方法的?
【设计意图】通过观察对比,让学生发现转化前后图形之间的相同点之后,沟通两个图形之间的内在联系,顺利地把新知转化为旧知,从而顺利推导出平行四边形面积的计算公式。
三、总结提示
教师:回忆一下,今天这节课有什么收获?
总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。
【设计意图】在本节课的最后,教师通过回忆帮学生把本节课得到的数学活动经验进行总结,引导学生在后续的学习中也利用转化的思想对图形的面积进行自主探索。
《平行四边形的面积》教学设计 篇12
一、 案例背景:
执教班级是五(3)班和五(5)班,这两个班的学生思维都比较活跃,知识面较广。
教学内容是北师大版六年制小学数学第九册第25-26页探索活动(一)《平行四边形的面积》。课前,学生只学了长方形、正方形面积计算,而平行四边形在他们的头脑中还是个直观模型,有关平行四边形特征等知识一无所知。鉴于上述种种情况,对教学进行必要的知识铺垫,以利于这次探索活动有效地开展。从事数学教学工作以来,我崇尚在课堂教学中,尽量为学生创设“合作交流,自主探索”的空间。
二、教材简析:
平行四边形面积的计算,是在学生掌握了长方形和正方形的面积计算,对平行四边形有了初步的认识,清楚了其特征及底和高的概念的基础上进行教学的。若想使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外,掌握平行四边形面积公式的推导方法,对后面学习其他图形的面积计算会起到积极的迁移作用。
三、教学诠释与研究。
“ 平行四边形的面积”我教学不止一次。以前教的是人教版教材,我把教学的重点放在:借助剪、拼的方法。利用形变积不变的道理,把平行四边形转化为长方形,从而推导出平行四边形的计算公式。教学时,我让学生动手剪、拼,把平行四边形拼成了长方形之后,我就开始下面的启发式提问:①平行四边形的底与长方形的长有什么关系?②平行四边形的高与长方形的宽有什么关系?③转化前后两图形之间什么没有变?启发学生讨论,回答。这样组织教学,学生一般都能得出正确结论,课堂教学进程是一帆风顺的,“效果”是好的。
现在再来审视一下以前的这一节课堂教学,我发现在这种看似良好的效果背后,却潜伏着大的危机:在这样的课堂中,问题由老师提出,思维的路线由老师操纵,学生究竟有多少自主学习的成分?这样的课堂教学貌似“启发式”,实则是由教学操纵的“包办婚姻”,学生是没有“自主权”的。若长此以往,学生只能成为解决问题的高手,而不是发发现问题、提出问题的高手。我们知道,创造源自问题,这样的教育培养出的学生还有创造性吗?
如今,我又开始教学这一内容。不同的现在使用的是北师大版的新教材。这一内容出现在五年级数学上册,标题是“探索活动(一)平行四边形的面积”。教材首先展示了这样一个情境:公园准备在一块平行四边形的空地上铺草坪,如何计算这块空地的面积?教材这样安排的目的是让学生面对一个新的问题,思考如何去解决,从而使学生感到学习新知识的必要性;随后,教材提供了两种解决问题的方法:一种是通过数格子的方法,数出这个平行四边形的面积,一种是通过剪与拼的活动,将平行四边形转化为长方形,然后计算出面积,最后,教材安排了观察平行四边形与长方形的关系,从中推导出计算平行四边形面积的公式。教材的编排意图是重在让学生自主探索,在探索活动中,使学生发现并理解平行四边形面积的计算方法。课堂教学时如何体现文本的这一“真谛”呢?新课程提倡教师要依据教材教,而不是教教材。在这一理念指导下,我对教材进行了重组。我根据班上学生的学习习惯和认识基础来创设问题情境。下面是课堂教学中的开始片断:
小黑板出示:
师:每个小方块的面积是1平方厘米,你能知道上面每个图形的面积是多少吗?
生:图1的面积是12平方厘米。
师:你们是怎么想的?
生1:我是一块块数的。
生2:我发现长方形长是4㎝,宽是3㎝,所以面积是4×3=12(平方厘米)。
师:谁能很快知道图2这个图形的面积吗?
生1:它的面积还是12平方厘米,因为还是由12个小正方形组成的。
生2:把中间的一排往左推一格,所以还是12平方厘米。
生3:把多的一块剪下来拼过去,正好是一个长方形,面积还是12平方厘米。
师:同学们真会动脑筋!我们可用割下来补过去的方法,将图形转变为长方形,很快知道它的面积。谁能很快说出图3的面积?
生1:在图形中间划出一个正方形,面积是9平方厘米,再把两边的三角形拼在一起,面积是3平方厘米,一共是12平方厘米。
生2:把左边的两个小三角形剪下来补在右边也正好是个长方形,面积是12平方厘米。
师:对于这个图形,我们用割补的方法能很快知道它的面积。
接下来,小黑板出示:
比较一下,图中的平行四边形的面积与长方形面积大小如何?
生1:我用数方格的方法:长方形有5×3=15个小方格,而平行四边形有11整格,加上8个半格拼成的4个整格,也是15个方格,平行四边形面积和长方形面积同样大。
生2:我把平行四边形左边的割下一个三角形,补到右边,就得到一个长方形,得到的长方形面积是15个方格,所以,平行四边形的面积也是15个方格,两个图形的面积大小相同。
师:把平行四边形割补成长方形,图形的什么变了,什么没有变?
生:图形的形状变了,面积大小没有变。
师:说得好!我们把割下的一块没有扔掉,而补在这里,正好得到一个长方形,图形的形状变了,但面积没有变。所以,原来的平行四边形的面积是15个小方格。两个图形的面积一样大。
反思:现代建构主义认为,知识并不能简单地由教师或其他人传授给学生而只能由每个学生依据自身已有的知识和经验主动地加以建构。所谓对新的学习材料的“理解 ”,就是学习者依据自身的已有知识和经验(认知绘声绘色)去解释新材料,使新材料与主体的已有知识、经验之间建立起实质性的、非任意的联系。在上述片断中,我设计了三个图形让学生直接说出它们的面积,并对学生用割补的方法给予肯定,为的是学生去探究平行四边形的面积计算方法时能产生学习的正迁移。接着,又设计了面积相等的两个图形,一个是长方形,一个是平行四边形,特别是两个图是在画有小方格的背景上画出的,我还暗示性的画出了平行四边形的高,让学生比较两个图形面积的大小,学生很快就能用数小方格的方法和“割补”法,为下面的推导出平行四边形的面积公式奠定了关键性的一步课后反思时,我觉得这节课在引导学生推导平行四边形面积公式时铺垫、暗示还是多了点,如果抽掉那些铺垫,直接让学生把一个平行四边形剪拼成长方形,这时课堂上又会是怎样的情景呢?我期待着下一次的教学实践。
几经思考,第二天在另一个班上这一内容时,我决定我觉得该给学生更多的自主探索的空间。请看下面的教学片断:
师:刚才同学们用“割补”法将平行四边形转化成长方形,比出了两个图形面积的大小,是不是所有的平行四边形都能用割补的方法转化成长方形呢?请同学们拿出各自的平行四边形纸片,动手剪剪拼拼,看看行不行?
学生进行操作实践,加验证。
师:你们手中的平行四边形能不能转化成长方形?谁愿意上讲台前演示给大家看?
学生争着前来演示,沿着平行四边形地高剪开,拼成长方形。
学生演示时,师追问学生:是沿着哪一条线剪的?
生:沿着平行四边形地高剪开的。
师:为什么要沿着高剪?
生:因为长方形的四个角都是直角,不沿着高剪,就拼不成一个长方形。
师:由此看来,对于任何一个平行四边形都可以转化成一个长方形,长方形的面积你们已经会计算了,现在,你们能算出你们手中的平行四边形的面积吗?
有的学生在量着,有的则愣着,有的忍不住抱怨着:它没有告诉什么呀,怎么算?我悄悄地走过去,小声地问:你希望告诉你什么,你就能算了,你有办法自己去知道需要的条件吗?得到启发,该生也拿尺量了起来。
全班交流自己的结果。
生:我量得我手中的平行四边形的底是6㎝,高是4㎝,所以面积是6×4=24(平方厘米)。
师:你能不能告诉大家,计算平行四边形的面积为什么用平行四边形的底乘高?
生:因为用割补的方法把平行四边形转化成长方形,面积不变。我发现长方形的长相当于平行四边形地底,宽相当于平行四边形的高,所以平行四边形的面积是底乘高。
结合学生的回答,板书:
长 方 形 面 积 = 长×宽
平行四边形面积 = 底×高
师:用字母s表示平行四边形的面积,a表示它的底,h表示它的高,计算平行四边形面积的字母公式是怎样的?
生1:s=a×h
生2:还可以用小圆点代替乘号。
生3:还可以省略小圆点,写作:s=ah
……
师:这节课,你们学到了什么?
生:学会了计算平行四边形的面积。
师:是怎么学会的呢?
部分学生沉默,估计是学生不善于表达。
师:面对着求平行四边形面积的新问题,我们用割补的方法转化成学过的长方形,用旧知识解决了新问题。以后,我们还可以用这种思想方法去获取三角形,梯形面积计算等新知识。你们说这种思想方法重要吗?
反思:对于如何概括出求平行四边形面积的公式?我没有像以前那样由教师提出一个个小问题,然后学生回答,从而得出公式,而是直接先让学生计算手中的平行四边形的面积。如何计算平行四边形的面积呢?这一问题对学生来说具有极大的挑战性。学生居然算出来了,这说明学生的潜力是巨大的。课堂上一定要让学生积极地独立思考,自主探究。如果教师牵着学生走,铺垫太多,会妨碍学生独立思考,不利于学生的发展。平行四边形的面积学生既然求出来了,归纳求平行四边形面积的公式也就水到渠成了。