《圆的整理与复习》教学设计【优秀5篇】
作为一无名无私奉献的教育工作者,编写教案是必不可少的,借助教案可以让教学工作更科学化。那么问题来了,教案应该怎么写?这次帅气的小编为您整理了《圆的整理与复习》教学设计【优秀5篇】,希望大家可以喜欢并分享出去。
圆的面积六年级数学教案 篇1
学材分析
教学重点:
面积计算公式的正确运用。
教学难点:
面积公式的推导过程。
学情分析
学生对圆面积公式的推导过程理解有一定的难度。
学习目标
1.理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
2.会用圆面积的计算公式,正确计算圆的面积。
导学策略
导练法、迁移法、例证法
教学准备
圆的面积模型、圆规、投影仪、投影片
教师活动
学生活动
一.引入
1.什么叫做圆面积?
2.出示大小略有不同的两个圆,让学生比较哪个圆的面积大?大多少?(学生口答后把两圆重叠,比较大小。)相差多少呢?
3.引出课题。
二.推导
1.问:小正方形面积怎样计算?(半径半径)圆面积与小正方形面积的3倍谁大谁小?圆面积与小正方形面积的4倍呢?2倍呢?
2.师生共同操作:拿出一张正方形纸,按要求对折4次(注意第4次折的折法,是按角对分地折),然后拿尺量出一等腰三角形剪一刀,展开,得到一个近似于圆的纸片。
3.教师操作:拿一张正方形纸,对折5次,剪一刀展开。与前一次剪的作比较,使学生知道,随着折的次数不断增加,剪下的图形也就越接近圆。
4.分析推导。师生共同拿出剪好的图形分析:这个图形等分成若干块,每一块都是什么形状?(等腰三角形)这个图形的面积怎么求?随着折的次数不断增加,剪下的图形的面积也就越接近什么图形的面积?
板书:图形面积=等腰三角形面积n=底高2n=Cr2n
=2rn
圆的面积=r2
边板书边提问:等腰三角形的底是多少?(C)等腰三角形的高相当于圆的什么?(半径r)
5.在上面推导的基础上,让学生分4人小组动手把准备的圆分成相等的16个小扇形,再拼成其他图形,推导出圆面积公式。教师巡视,取学生拼成的各式各样的图形,贴在黑板上,选其中两个进行分析。
三.巩固
试一试。
四.总结
五.作业
学生口答
师生共同操作
师生共同操作
已经是第2次教毕业班了记得第1次教的时候,还是幼儿园的院长一早每天都要过去一下,课前准备就不够充分,上课就照本宣科。而现在教这个知识的时候,不仅教具演示而且学生实际操作,所以教学效果就好多了,可以说连中下生都能灵活应用这个知识。
《圆面积》小学数学评课稿 篇2
《圆面积的计算》评课稿
一、目标定位正确:
1、课内充分培养学生动手操作、观察、分析、概括推理等能力。
2、理解圆面积计算公式的推导过程。掌握圆面积的计算公式。
3、让学生能利用圆面积公式进行计算,解决实际问题。
二、引入自然。
1、复习巩固了圆的周长计算公式,同一圆内半径与直径关系。
2、复习巩固了什么叫面积,让学回忆,平行四边形、三角形、梯形、面积计算的推导过程。从而自然引入圆面积计算的推导过程。
三、注重学生的动手操作。
在教学过程中,充分体现让学生自己动手画圆,把圆平均分成若干份,再让学生拼成近似的长方形或平行四边形。让他们仔细观察,研究长方形的长(或平行四边形的底)是什么,长方形的宽(或平行四边形的高)是什么,从而推导圆面积的计算公式。与此同时,更重要的是培养了学生的空间想象能力。
探讨的地方
在学生动手操作的`过程中,为了照顾中差学生,教师应充分了;利用教具或课件展示,让学生有充分的观察和思考,真正感悟圆面积公式推导的整个过程。其次是在计算公式中对半径的平方还需要指导和练习,以便学生在解决问题的实际过程中很好的运用。
圆的面积教案 篇3
教学目标:
1、使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆面积的计算公式,能正确计算圆的面积,并能应用公式解决相关的简单问题。
2、使学生进一步体会“转化”方法的价值,培养运用已有知识解决新问题的能力,发展空间观念和初步推理的能力。
3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高数学学习的兴趣。
教学重点:
探索圆面积的计算
教学难点:
理解面积的意义,推导圆的面积计算公式
教学过程
一、导入新课。
(一)关于圆你已经知道了什么?你还想知道什么?
(二)你觉得什么是圆的面积?(让学生用手摸一摸圆的周长和面积)
(三)你觉得圆的面积可能和什么有关?
(四)出示下图
(五)问:看了上图你有什么想法?(课件动态显示圆面积与4r2
和3r2的)关系。
(六)思考:圆的面积应该怎样计算呢?对于这个问题你有些什么思考?
小结:将圆转化成已学过的图形,从而推导出它的面积计算公式。是一种不错的想法。
二、探索圆积的计算公式
(一)让学生试着将圆剪拼成长方形。
(二)阅读课本P104页
(三)让学生再操作
(四)课件演示
(五)让学生观察、比较、想象。如果等分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。
(六)引导观察讨论:这个拼成的长方形和圆有什么关系?
(七)汇报讨论结果。
这个用圆分割成的小块拼成的长方形,宽就是圆的半径r,长就是圆的周长的一半,也就是2πr÷2=πr。
因为长方形面积=长×宽
所以圆的面积=πr×r=πr2
用S表示圆的面积,那么圆的面积计算公式就是:
S=πr2
(八)让学生用语言表述圆面积的推导过程(指名说、同桌互说)
(九)教学例9
1、出示例9。一个自动旋转喷水器的最远喷水距离大约是5米。它旋转一周后喷灌的面积大约是多少平方米?
2、让学生尝试解答。
3、集体评议
4、思考:在进行圆面积的计算时要注意什么?(平方的计算和单位名称)
三、知识运用
(一)求出下列各个图形的面积。(P105页的练一练)
(二)根据下面所给的条件,求圆的面积。
1)半径2分米2)直径10厘米3)周长12.56
(生独立解答,思考3)面积和周长相等吗?做了这些题目你有什么体会?)
四、本课小结。
通过本课的学习你有什么收获?有什么体会?
六年级数学上册教案圆的面积 篇4
【图解教材】
利用光盘帮助学生理解求圆环的面积是利用外圆的面积减去内圆面积。
【课时目标】
1、学会已知圆的周长求圆的面积的解题思路与方法,理解并学会环形面积。
2、培养学生灵活、综合运用知识的能力,运用所学的知识解决简单的实际问题。
3、培养学生的逻辑思维能力。
【教学重点】求圆环的面积的方法。
【教学难点】运用所学知识解决实际问题。
【教学过程】
一、复习
1、口算:
32 42 52 82 92 202
2π 3π 6π 10π 7π 5π
2、思考:
(1)圆的周长和面积分别怎样计算?二者有何区别?
(2)求圆的面积需要知道什么条件?
(3)知道圆的周长能够求它的面积吗?
二、新课
1、教学练习十六第3题
小刚量得一棵树干的周长是125.6cm,这棵树干的横截面积是多少?
已知:c=125.6厘米 s=πr2
r:125.6÷(2×3.14) 3.14×202
=125.6÷6.28 =3.14×400
=20(厘米) =1256(平方厘米)
答: 这棵树干的横截面积1256平方厘米。
3、教学环形面积。
(1)例2 光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?
已知:R=6厘米 r=2厘米 求: s=?
3.14×62 3.14×22
=3.14×36 =3.14×4
=113.04(平方厘米) =12.56(平方厘米)
113.04-12.56=100.48 (平方厘米)
第二种解法:3.14×(62-22)=100.48(平方厘米)
(2)小结:环形的面积计算公式:
S=πR2-πr2 或 S=π×(R2-r2)
(3)完成做一做: 一个圆形环岛的'直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?
三、课堂小结;
四、板书设计:
【评价方案】
一、达标测评
●学校有个圆形花坛,周长是18.84米,花坛的面积是多少?
选择正确算式
A、(18.84÷3.14÷2)2×3.14
B、(18.84÷3.14)2×3.14
C、18.842×3.14
●环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?
●课堂小结。
(1)这节课的学习内容是什么?
(2)求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?
已知半径求面积 S=πr2
已知直径求面积 S=π()2
已知周长求面积 S=π()2
(3)环形面积: S=π(R2-r2)
二、效度评价
参评人数( )
题号
1
2
3
答对人数
正确率
三、教学反思
学生参与程度
教学目标达成度
经验积累
问题分析
改进措施
圆的面积教案 篇5
教学目标:
1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。
2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
教学重点:
掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。
教学难点:
应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
教学准备:
圆规,环形图片,教学情境图。
教学过程:
一、创设情境,引入新知
1.出示自然界中的一些环形图片。
(l)观察图片,说说这些图形都是由什么组成的。
(2)你能举出一些环形的实例吗?
2.引入:今天这节课我们就一起来研究环形面积的计算方法。
二、合作交流,探究新知
1.教学例11。
(1)出示例11题目,读题。
(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。
(3)小组讨论,理清解题思路。
(4)集体交流
①求出外圆的面积。
②求出内圆的面积。
③计算圆环的面积。
(5)学生按步骤独立计算。
(6)组织交流解题方法,教师板书
①求出外圆的面积:3.14102 =314(平方厘米)
②求出内圆的面积:3.1462 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
(7)提问:有更简便的计算方法吗?