2.4 有理数的加法【3篇】

发布时间:

在教学工作者开展教学活动前,时常需要用到教案,教案是教学活动的总的组织纲领和行动方案。那么优秀的教案是什么样的呢?下面是小编辛苦为大家带来的2.4 有理数的加法【3篇】,在大家参照的同时,也可以分享一下给您最好的朋友。

《有理数的加法》教案 篇1

教材分析

分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

1、 有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。

2、 就第二章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分一-有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。

从以上两点不难看出它的地位和作用都是很重要的。

接下来,介绍本节课的教学目标、重点和难点。

教学大纲是我们确定教学目标,重点和难点的依据。教学大钢规定,在有理数的加法的第一节要使学生理解有理数加法的意义,理解有理数的加法法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标。

1、知识目标是:

(1)理解有理数加法的意义;

(2)理解并掌握有理数加法的法则;

(3)应用有理数加法法则进行准确运算;

(4)渗透数形结合的思想。

2能力目标是:

(1)培养学生准确运算的能力;

(2)培养学生归纳总结知识的能力;

3、德育目标是;

(1)渗透由特殊到一般的辩证唯物主义思想:

(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是是;有理数加法法则的理解。

二、教材处理

本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程()的设计帘具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。

三、教学方法和数学孚段

在教学过程()中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,。教学过程()中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程()中在掌握知识同时、发展智力、受到教育。

四、教学过程的设计。

1, 引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。

2, 探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。

3, 巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。

4, 归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。

.4 有理数的加法 篇2

1.3.1 有理数的加法(一)

教学目标1,在现实背景中理解有理数加法的意义。2,经历探索有理数加法法则的过程,理解有理数的加法法则。3,能积极地参与探究有理数加法法则的活动,并学会与他人交流合作。4,能较为熟练地进行有理数的加法运算,并能解决简单的实际间题。5,在教学中适当渗透分类讨论思想

教学难点异号两数相加

知识重点和的符号的确定

教学过程(师生活动)

设计理念

设置情境

引入课题回顾用正负数表示数量的实际例子;在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?  师:如何进行类似的有理数的加法运算呢?这就是我们这节课一起与大家探讨的问题。(出示课题)让学生感受到在实际问题中做加法运算的数可能超出正数的范围,体会学习有理数加法的必要性,激发学生探究新知的兴趣。

分析问题

探究新知如果是球队在某场比赛中上半场失了两个球,下半场失了3个球,那么它的得胜球是几个呢?算式应该怎么列?若这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢?(学生思考回答)思考:请同学们想想,这支球队在这场比赛中还可能出现其他的什么情况?你能列出算式吗?与同伴交流。学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况。    2,借助数轴来讨论有理数的加法。i    一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作-5 m.    (1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义。    (2)交流汇报。(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上)(3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?(4)在学生归纳的基础上,教师出示有理数加法法则。    有理数加法法则:    1,同号两数相加,取相同的符号,并把绝对值相加。    2,绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.    3,一个数同。相加,仍得这个数。再次创设足球比赛情境,一方面与引题相呼应,联系密切,另一方面让学生在此情境中感受到有理数相加的几种不同情形,并能将它分类,渗透分类讨论思想。估计学生能顺利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(-),0+(+),0+(一).但不能把它归的为同号异号等三类,所以此处需教师。点拔、指扎,体现教师的引导者作用。 ①假设原点0为第一次运动起点,第二次运动的起点是第一次运动的终点。②若学生在学习小组内不能很好地参与探究,也可以让其参照教科书第21页的“探究”自主进行。③让学生感受“数学模型”的思想。④学会与同伴交流,并在交流中获益。培养学生的语言表达能力和归纳能力,也许学生说得不够严谨,但这并不重要,重要的足能用自己的语言表达自己所发现的规律

解决问题解决问题 例1计算:(1)(-3)+(-9);  (2)(-5)+13;(3)0十(-7);    (4)(-4.7)+3.9.教师板演,让学生说出每一步运算所依据的法则。请同学们比较,有理数的加法运算与小学时候学的加法有什么异同?(如:有理数加法计算中要注意符号,和不一定大于加数等等)例2足球循环赛中,红队4:1胜黄队,黄队1:0胜蓝队蓝队1:0胜红队,计算各队的净胜球数。 (让学生读数,理解题意,思考解决方案,然后由学生口述,教师板书)学生活动:请学生说一说在生活中用到有理数加法的例子。注意点:(1)下先确定是哪种类型的加法再定符号,最后算绝对位。(2)教教师板演的例通要完整体现过程,并要求学生在刚开始学的时候要把中间的过程写完整。(3)体现化归思想。(4)这里增加了两道题目,要是让学生能较为熟练地运用法则进行计算。   拓宽学生视野,让学生体会到数学与生活的密切联系。

课堂练习教科书第23页练习

小结与作业

课堂小结通过这节课的学习,你有哪些收获,学生自己总结。

本课作业必做题:阅读教科书第20~22页,教科书第31习题1.3第1、12、第13题。

本课教育评注(课堂设计理念,实际教学效果及改进设想)   1,在本节课的设计中,注重引导学生参与探究、归纳(用自己的语言叙迷)有理数加法法则的过程。   2,注意渗透数学思想方法。数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等).如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号,一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法。  3,注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听别人的意见和建议。

附板书:1.3.1 有理数的加法(一)

.3有理数的加法 篇3

课题:有理数的加法一、教学目的:1.让学生经历探索有理数加法法则的过程理解有理数加法法则 2.能准确地利用法则进行加法运算二、重点、难点:重点:有理数加法法则的探索难点:异号两数相加时和的符号确定三、课程分析:日常生活中我们通常对实际的东西认识较快,而对抽象的东西认识较慢,这正是初一学生现阶段数学学习的特点。因此本节课中,我在学生有赚和赔这一实际生活体验的基础上利用“正负抵消”的思想,让学生进行一些简单的有理数加法运算;再融入“分类”的数学思想把这些运算分类,引导学生通过分组讨论、合作交流、相互补充,总结归纳出法则;最后,启发学生利用数轴的直观形象性,数形结合,验证法则,从而加深对法则的理解。四、教学步骤:活动1、本学期我们学习了正数和负数,它们表示的是什么样的两个量?绝对值和相反数是怎样定义的?活动说明    温故而知新,复习:赚了一元钱用“+1”表示,则亏了一元钱如何表示?以及相反数、绝对值有关知识为总结归纳加法法则减少障碍。活动2、从生活实际出发提出问题:小明在放假时去买晚报,第一天赚了一元钱,第二天亏了一元钱,请问小明两天一共赚了多少钱?活动说明    引入生活中抵消的思想“正负抵消为零”活动3、联系生活中的盈亏现象算一算下面的式子,并把自己的算法说一说:(小组讨论)(-2)+(-3)=               (-2)+3 =             2+(-3)=        (+2)+(+3)=                 2+(-2)=活动说明   已经复习赚钱用“+”表示,亏钱用“-”表示,并有实际生活作为背景,这几道建立在学生的认知发展水平和已有的知识经验基础之上的题目,学生很容易得到答案。如:(—2)+(—3)就是第一天亏两元,第二天亏三元两天一共亏了多少钱?以上各题的形象计算是为建立加法法则的数学模型做准备。 活动4、把以上各题分类并说明分类的理由活动说明   逐步培养学生具有“分类”这一基本的数学思想和创新意识。分类的结果具有多样性,注意选择较典型和特殊的呈现,或引导学生按加数的符号分类,便于学生归纳法则。同号                              异号(+2)+(+3)=                      (-2)+3 =  (-2)+(-3)=                     2+(-3)=                                 2+(-2)=活动5、分组讨论:按以上分类观察思考下列问题,并证明自己的结论1、两个加数的绝对值与和的绝对值有什么关系?两加数同号时,两加数和的绝对值是两加数的绝对值之和;两加数异号且两加数的绝对值不等,两加数和的绝对值是两加数中较大绝对值减去较小的绝对值。2、和的符号由什么决定?两加数同号,取相同的符号;两加数异号且两加数的绝对值不等,取绝对值较大的加数的符号。(课练)填空有理数加法法则:1、同号两数相加,取   的符号,并把绝对值   。2、绝对值不相等的异号两数相加,取    的加数的符号,并用较  绝对值减去较     绝对值。3、互为相反数的两数相加得        。4、一个数与0相加,     。活动说明   归纳法则是一个有特殊到一般,由数学事实到数学模型的过程,经历这一过程正是本节课的重点,而异号相加法则的归纳是一个难点,由于学生是带着两个问题进行有目标的探究活动,有理由相信能通过独立探究或合作交流突破这一难点。这个活动是为学生提供充分进行数学教学活动的机会,让学生完整的进行观察、猜测、推理、验证、合作交流、组织表达等数学活动。所以,要保证活动时间,除了关注活动的结果,还要关注学生在活动中所表现出来的情感和态度,帮助学生了解自我,建立自信。活动6、运用法则计算3+(—2)=?并用其他方法验证运算的正确性。借助数轴,笔尖放在原点处,先向正方向移动3个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?试用这种方法算出下列各式(指导学生首先画出数轴,接下来小组讨论)(+2)+(+3)=   (-2)+(-3)=     2+(—3)=    2+(—2)=     是否和加法法则得出的结果一样?活动说明   鼓励学生用数轴和生活的实际经验来解释的现实意义,体会数学在实际生活的应用,逐步培养学生数形结合的意识,逐步培养学生从数学的角度多角度的去分析生活中的问题。例1:计算(1)(-180)+(+20);(2)(-15)+(-3);(3)5+(-5);   (4)0+(-2)解: (1)(-180)+(+20)=-(180-20)=-160  (2)(-15)+(-3)     =-(15+3)(3)5+(-5)=0(4)0+(-2)=-2(说明:强调解题的依据和运算的过程。)  p33 练一练:1(学生板演,强化过程)2.(进一步熟悉加法法则)例2:利用有理数加法解下列各题:(1)潜水员先潜入水下40m,然后又上升18m,此时潜水员在水下什么位置?(2)某仓库原有粮食54吨,运出32吨,现在仓库共有粮食多少吨?解:(1)-40+18=-(40-18)=-22m即此时潜水员在水下22m(2)54+(-32)=+(54-32)=22吨,即现在仓库有粮食22吨(课练)1.某天股票a开盘价12元,上午11:40涨-1.0元,下午收盘时又涨了-0.2元,则股票a这天收盘价为多少?2.吉姆的父亲上星期五买进某公司的股票若干股,每股8元,下表为本周内每日该股票的涨跌情况(单位:元).星 期一二三四五每股涨跌+0.4+0.6-0.5-0.3-0.4(1)星期三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?说明:习题安排上的梯度,便于学生理解题意。五、小结:1.有理数加法的法则是什么?2.有理数的加法运算,首先应先判断和的符号,然后再算和的绝对值。六、作业:课本41页习题2.4  1

上一篇:2.3绝对值与相反数

下一篇:2.4 有理数的加法(1)