初中七年级数学教案范文四篇
教育的真正目的就是让受教育者不断提出问题、思考问题、解决问题。数学学科逻辑性、推理性很强,但方法可以是多样,然而最终的结论是唯一的。教师只要根据不同的年级情况加上现代教学设备,深入去备好学生学情。如果每位学生都能够将自己学习的激情展现调动起来,在这种意识的驱使下去探索发现,且在这过程中感受到获得知识的喜悦和幸福,将会提高他们学习的主动性。以下是小编整理的关于初中数学教案,欢迎查阅!,
七年级数学教案1
一.一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组的概念可以从以下几个方面理解:
(1)组成不等式组的不等式必须是一元一次不等式;
(2)从数量上看,不等式的个数必须是两个或两个以上;
(3)每个不等式在不等式组中的位置并不固定,它们是并列的.
二.一元一次不等式组的解集及解不等式组:在一元一次不等式组中,各个不等式的解集的公共部分就叫做这个一元一次不等式组的解集。求这个不等式组解集的过程就叫解不等式组。解一元一次不等式组的步骤:
(1)先分别求出不等式组中各个不等式的解集;
(2)利用数轴或口诀求出这些解集的公共部分,也就是得到了不等式组的解集.
三.不等式(组)的解集的数轴表示:
一元一次不等式组知识点
1.用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,有等号的画实心原点,无等号的画空心圆圈;
2.不等式组的解集,可以在数轴上先画同各个不等式的解集,找出公共部分即为不等式的解集。公共部分也就各不等式解集在数轴上的重合部分;
3..我们根据一元一次不等式组,化简成最简不等式组后进行分类,通常就能把一元一次不等式组分成如上四类。
说明:当不等式组中,含有“≤”或“≥”时,在解题时,我们可以不关注这个等号,这样就这类不等式组化归为上述四种基本不等式组中的某一种类型。但是,在解题的过程中,这个等号要与不等号相连,不能分开。
四.求一些特解:求不等式(组)的正整数解,整数解等特解(这些特解往往是有限个),解这类问题的步骤:先求出这个不等式的解集,然后借助于数轴,找出所需特解。
【一元一次不等式组考点分析】
(1)考查不等式组的概念;
(2)考查一元一次不等式组的解集,以及在数轴上的表示;
(3)考查不等式组的特解问题;
(4)确定字母的取值。
【一元一次不等式组知识点误区】
(1)思维误区,不等式与等式混淆;
(2)不能正确地确定出不等式组解集的公共部分;
(3)在数轴上表示不等式组解集时,混淆界点的表示方法;
(4)考虑不周,漏掉隐含条件;
(5)当有多个限制条件时,对不等式关系的发掘不全面,导致未知数范围扩大;
(6)对含字母的不等式,没有对字母取值进行分类讨论。
初中年级数学教学设计:完全平方公式
一、 内容简介
本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
关键信息:
1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。
二、学习者分析:
1、在学习本课之前应具备的基本知识和技能:
①同类项的定义。
②合并同类项法则
③多项式乘以多项式法则。
2、学习者对即将学习的内容已经具备的水平:
在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
三、 教学/学习目标及其对应的课程标准:
(一)教学目标:
1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理
数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。
(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。
四、 教育理念和教学方式:
1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。
教学是师生交往、积极互动、共同发展的过程。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。
2、采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。
3、教学评价方式:
(1) 通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。
(2) 通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。
(3) 通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。
五、 教学媒体 :多媒体
六、 教学和活动过程:
教学过程设计如下:
〈一〉、提出问题
[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析问题
1、[学生回答] 分组交流、讨论
(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,
(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。
(1)原式的特点。
(2)结果的项数特点。
(3)三项系数的特点(特别是符号的特点)。
(4)三项与原多项式中两个单项式的关系。
2、[学生回答] 总结完全平方公式的语言描述:
两数和的平方,等于它们平方的和,加上它们乘积的两倍;
两数差的平方,等于它们平方的和,
,减去它们乘积的两倍。
3、[学生回答] 完全平方公式的数学表达式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、运用公式,解决问题
1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
(m+n)2=____________, (m-n)2=_______________,
(-m+n)2=____________, (-m-n)2=______________,
(a+3)2=______________, (-c+5)2=______________,
(-7-a)2=______________, (0.5-a)2=______________.
2、判断:
( )① (a-2b)2= a2-2ab+b2
( )② (2m+n)2= 2m2+4mn+n2
( )③ (-n-3m)2= n2-6mn+9m2
( )④ (5a+0.2b)2= 25a2+5ab+0.4b2
( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2
( )⑥ (-a-2b)2=(a+2b)2
( )⑦ (2a-4b)2=(4a-2b)2
( )⑧ (-5m+n)2=(-n+5m)2
3、小试牛刀
① (x+y)2 =______________;② (-y-x)2 =_______________;
③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;
⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;
⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.
〈四〉、[学生小结]
你认为完全平方公式在应用过程中,需要注意那些问题?
(1) 公式右边共有3项。
(2) 两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。
(4)中间项是等号左边两项乘积的2倍。
〈五〉、冒险岛:
(1)(-3a+2b)2=________________________________
(2)(-7-2m) 2 =__________________________________
(3)(-0.5m+2n) 2=_______________________________
(4)(3/5a-1/2b) 2=________________________________
(5)(mn+3) 2=__________________________________
(6)(a2b-0.2) 2=_________________________________
(7)(2xy2-3x2y) 2=_______________________________
(8)(2n3-3m3) 2=________________________________
〈六〉、学生自我评价
[小结] 通过本节课的学习,你有什么收获和感悟?
本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。
〈七〉[作业] P34 随堂练习 P36 习题
七、课后反思
本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。
七年级数学教案1
一、指导思想
以十八大精神为指针,全面贯彻党的教育方针,积极进行数学知识的学习,强化学生的学习能力,培养创新思维,从而让学生整体素质得到提升。作为科任教师,更要帮助学生们了解学习技巧、方法,做一个合格的中学生。
二、学情分析
经过七年级第一学期的教学,发现班内部分学生数学基础较差,两极分化现象严重,尤其是后进生的数学成绩普遍偏差。部分学生在解题时比较粗心,不能很好的发挥出自己应有的水平。但通过上学期的学习,不少学生掌握了一定的数学学习方法和解题技巧,对于所学知识能较好地应用到解题和日常生活中去。
三、教学内容
本学期教学章节的内容:
第六章:一元一次方程。本章主要学习一元一次方程及其解的概念和解法与应用。
本章重点:一元一次方程的解法及实际应用。
本章难点:列一元一次方程解决实际问题。
第七章:二元一次方程。本章主要学习二元一次方程(组)及其解的概念和解法与应用。
本章重点:二元一次方程组的解法及实际应用。
本章难点:列二元一次方程组解决实际问题。
第八章:不等式与不等式组。本章主要内容是一元一次不等式(组)的解法及简单应用。
本章重点:不等式的基本性质与一元一次不等式(组)的解法与简单应用。
本章难点:不等式基本性质的理解与应用、列一元一次不等式(组)解决简单的实际问题。
第九章:多边形。本章主要学习与三角形有关的线段、角及多边形的内角和等内容。
本章重点:三角形有关线段、角及多边形的内角和的性质与应用。
本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,三角形内角和的证明与多边形内角和的探究。
第十章:轴对称、平移与旋转。
四、教学目标
通过本期教学,学生应掌握必要的基本知识和基本技能,形成相应的数学思想,积累丰富的数学活动经验,能运用数学知识解决生活中的实际问题,形成一定的数学素养,为今后继续学习数学打下良好的基础。继续做好培优工作,并做好配套工作。能掌握科学的学习方法,形成良好学风,养成良好的数学学习习惯,构建融洽的师生关系,使学生在德、智、体各方面全面发展。
五、教学措施
1、认真研读新课程标准,钻研教材,精选习题,精心备课,做好教案,上好新课。
同时仔细批改作业,作好辅导,发现问题及时解决作认真总结成功与失败的经验和原因。
2、充分利用先进教学媒体进行教学,设置教学情境,结合日常生活,由浅入深,循序渐进。
引导学生主动加入课堂学习和讨论,积极参与知识的探究与规律的总结。
3、营造和谐、自主的学习氛围,引导学生进行合作探究、交流和分享发现的快乐。
让学生体会到学习的乐趣,激发学生的学习热情。
4、精心设计探究主题,引导学生学会发散思维,培养学生创造性思维能力,实现一题多解,举一反三,触类旁通。
5、继续坚持课改,开展分层教学,成立互助学习小组,以优带良,以优促后。
同时狠抓中等生,辅导后进生,实现共同进步。
六、教学进度
第六章:一元一次方程???????????????????????????第1~3周
第七章:二元一次方程组?????????????????????????第4~7周
第八章:一元一次不等式?????????????????????????第8~10周
期中复习检测???????????????????????????????????第11周
第九章:多边形?????????????????????????????????第12~14周
第十章:轴对称平移与旋转???????????????????????第15~17周
期末复习及考试?????????????????????????????????第18~20周
七年级数学教案2
一、教学目标
1、知识与技能 (1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个
负数的大小。 (2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。 2、过程与方法目标: (1)、通过运用“| |”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学
生抽象思维的目的 (2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过
观察,发现规律、总结方法,发展学生的实践能力,培养创新意识; (3)、通过对“做一做”“议一议” “试一试”的交流和讨论,培养学生有条理地用语言
表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。
3、情感态度与价值观:
借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。
二、教学重点和难点
理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。
三、教学过程:
1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟) 2.在组长的组织下进行讨论、交流。(约5分钟) 3、小组分任务展示。(约25分钟) 4、达标检测。(约5分钟) 5、总结(约5分钟)
四、小组对学案进行分任务展示
(一)、温故知新:
前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴?数轴的三要素什么?
(二) 小组合作交流,探究新知
1、观察下图,回答问题: (五组完成)
大象距原点多远?两只小狗分别距原点多远?
归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的 。一个数a的绝对值记作: .
4的绝对值记作 ,它表示在 上 与 的距离, 所以| 4|= 。
2、做一做:
(1)、求下列各数的绝对值:(四组完成) -1.5, 0, -7, 2 (2)、求下列各组数的绝对值:(一组完成)
(1)4,-4; (2) 0.8,-0.8;
从上面的结果你发现了什么?
3、议一议:(八组完成)
(1)|+2|= ,
1= ,|+8.2|= ; 5(2)|-3|= ,|-0.2|= ,|-8|= . (3)|0|= ;
你能从中发现什么规律?
小结:正数的绝对值是它 ,负数的绝对值是它的 ,0的绝对值是 。
4、试一试:(二组完成)
若字母a表示一个有理数,你知道a的绝对值等于什么吗?
(通过上题例子 ,学生归纳总结出一个数的绝对值与这个数的关系。)
5:做一做:(三组完成)
1、( 1 )在数轴上表示下列各数,并比较它们的大小:
- 3 , - 1
( 2 ) 求出(1)中各数的绝对值,并比较它们的大小
( 3 )你发现了什么?
2、比较下列每组数的大小。
(1) -1和 – 5;(五组完成) (2) ?
(3) -8和 -3(七组完成)
5和- 2.7(六组完成) 6五、达标检测:
1:填空:
绝对值是10的数有( )
|+15|=( ) |–4|=( )
| 0 |=( ) | 4 |=( ) 2:判断 (1)、绝对值最小的数是0。( ) (2)、一个数的绝对值一定是正数。( ) (3)、一个数的绝对值不可能是负数。( )
(4)、互为相反数的两个数,它们的绝对值一定相等。( ) (5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。( )
六、总结:
1绝对值 :在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.
2.绝对值的性质:正数的绝对值是它本身;
负数的绝对值是它的相反数; 0 的绝对值是 0.
因为正数可用a>0表示,负数可用a<0表示,所以上述三条可表述成: (1)如果a>0,那么|a|=a (2)如果a<0,那么|a|=-a (3)如果a=0,那么|a|=0
3、会利用绝对值比较两个负数的大小: 两个负数比较大小,绝对值大的反而小.
七、布置作业
P50页,知识技能第1,2题.
七年级数学教案3
●教学内容
七年级上册课本11----12页1.2.4绝对值
●教学目标
1.知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。
3.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
●教学重点与难点
教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
●教学准备
多媒体课件
●教学过程
一、创设问题情境
1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作?__________,B处记作__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?
小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念?———绝对值。
二、建立数学模型
1、绝对值的概念
(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)
绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。
注意:①与原点的关系 ②是个距离的概念
2..练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。[温度上升了5度,用 +5表示的话,那么下降了5度,就用-5 表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。]
(通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)
三、应用深化知识
1、例题求解
例1、求下列各数的绝对值
-1.6 , , 0, -10, +10
2、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)
特点:1、一个正数的绝对值是它本身
2、一个负数的绝对值是它的相反数
3、零的绝对值是零
4、互为相反数的两个数的绝对值相等
3.出示题目
(1) -3的符号是_______,绝对值是______;
(2) +3的符号是_______,绝对值是______;
(3) -6.5的符号是_______,绝对值是______;
(4) +6.5的符号是_______,绝对值是______;
学生口答。
师:上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的两个数称互为相反数。那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗?
5、练习3:回答下列问题
①一个数的绝对值是它本身,这个数是什么数?
②一个数的绝对值是它的相反数,这个数是什么数?
③一个数的绝对值一定是正数吗?
④一个数的绝对值不可能是负数,对吗?
⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗?
(由学生口答完成,进一步巩固绝对值的概念)
6、例2.求绝对值等于4的数
(让学生考虑这样的数有几个,是怎样得出这个结果的呢?对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)
分析:
①从数字上分析
∵|+4|=4, |-4|=4 ∴绝对值等于4的数是+4和-4画一个数轴(如下图)
②从几何意义上分析,画一个数轴(如下图)
因为数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M
所以绝对值等于4的数是+4和-4.
6、练习:做书上12页课内练习1、2两题。
四、归纳小结
1、本节课我们学习了什么知识?
2、你觉得本节课有什么收获?
3、由学生自行总结在自主探究,合作学习中的体会。
五、课后作业
1、让学生去寻找一些生活中只考虑绝对值的实际例子。
2、课本15页的作业题。