《最小公倍数》教案(优秀25篇)

发布时间:

编写教案要依据教学大纲和教科书。从学生实际情况出发,精心设计。

随堂练习: 1

1、求下列每组数的最小公倍数。

2和8 3和8 6和156和9

4和106和8 4和108和10

2、下面的说法对吗?说一说你的理由。

(1)两个数的最小公倍数一定比这两个数都大。

(2)两个数的积一定是这两个数的公倍数。

3、练习:六盘水火车站是12路和13路公交车的起点站。12路每3分钟发车一次,13路公交车每5分钟发车一次。这两路公交车同时发车以后,至少再过多久又同时发车?

重点难点: 2

求两个数最小公倍数的方法。

最小公倍数教学设计 3

教学目标

1、通过练习,使学生发现求两个数的最小公倍数的一些简捷的方法,并能根据两个数的关系选择用合理的方法求两个数的最小公倍数。

2、让学生感受数学与生活的联系,体会解决问题策略的多样性。

教学重、难点:

求两个数的最小公倍数的一些简捷的方法。

教学过程:

一、基础练习

找出下面每组数的最小公倍数。

4和63和75和910和6

二、完成第25页的5~8题。

1、第5题

⑴①让学生观察左边4题,说说这几组数有什么共同的特点。

②找出每组两个数的最小公倍数。

③比较和交流:有什么发现?

(两个数的最小公倍数就是它们的乘积。)

⑵独立完成右边4题,再比较交流发现了什么?

2、第6题

先由学生独立完成。

然后说说分别是什么方法求出每组上数的最小公倍数的?

3、第7题

先让学生用列表的方法找出答案,并通过交流使学生体会到列表的过

程实际上就是求7和8的最小公倍数。

4、第8题

先让学生说说求几月几日小林和小军再次相遇,可以先求哪两个数的

最小公倍数,再让学生独立解答。

三、小结:通过今天这一节课的学习,你有什么收获?

四、思考题

提示:先用列举法找3、4和6的最小公倍数。

教学过程: 4

一、以趣激疑

比比谁的声音亮?请两组学生报数,并请报到2、3倍数的同学分别起立。问:你发现了什么?为什么有些人起立了两次?让学生初步感受有些数既是2的倍数又是3的倍数。(教师引导学生用“既是…又是…”来表达想法。)

师:6、12、18、24……既是2的倍数又是3的倍数,我们就可以说6、12、18、24……是2和3的公倍数。(师板书“公倍数” )

师:同学们,今天我们就一起来研究有关“公倍数”的问题。

二、创设情境,感知概念

1、两个数的公倍数和最小公倍数的概念教学

师:同学们,你们喜欢阿凡提吗?为什么喜欢他?(他聪明、机智、幽默、……)今天老师也给你们讲个阿凡提的故事:从前有个长工,在巴依老爷家干了一年也没有拿到一个铜板。长工们于是自发地组织了起来并邀请阿凡提帮他们去向巴依老爷讨工资。巴依老爷含着烟斗冷笑着说:“工资我可以给你,不过我的钱都在我的账房先生那里。从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。到了某天,他真的从巴依老爷家帮长工拿到了工钱。

请大家想一想,阿凡提是哪天去巴依老爷家的?他用的是什么办法找到这个日期的?你准备如何解决这个问题?

让学生独立思考,整理解决问题的思路,并在四人小组里交流、讨论。全班汇报,交流想法。(同学们达成共识:要先分别找出巴依老爷、账房先生的休息日、再找出他们两人的共同休息日。)

同桌两人合作,通过在日历上圈一圈、本子上写一写等方式,寻求解决的办法。师巡视,并重点引导学生辨析休息日的日期应是4和6的公倍数,而不是3和5的公倍数。

全班交流,汇报。

师板书:巴依老爷的`休息日:4、8、12、16、20、24、28

账房先生的休息日:6、12、18、24、30

他们八月份的共同休息日:12、24

这些数据说明了什么?如果阿凡提8日这天去巴依老爷家行吗?那18日这天去巴依老爷家行吗?引导学生明确阿凡提要把事情办好,只有在巴依老爷和账房先生都在家休息的日子去才行。所以阿凡提可以在12日和24日这两天去找巴依老爷和账房先生。

你们猜猜阿凡提会哪一天去巴依老爷家呢?

师板书:最早的共同休息日:12

师:你们真聪明,用自己的智慧解决了问题。现在我们一起用数学的眼光,来看看巴依老爷和账房先生的休息日的数据有什么特点?根据学生的发言,教师把板书“巴依老爷的休息日、账房先生的休息日、他们八月份的共同休息日”相应地改写成“4的倍数、6的倍数、4和6的倍数”。

师:“4和6的倍数”还可以怎么说?(4和6的公倍数)“公”是什么意思?(你有我也有、共有)数据“12”是什么?(4和6的最小公倍数)

你还有其他的表示方式吗?(集合圈的图示方式)

谁能说说什么是公倍数?什么是最小公倍数?教师板书课题。

2、加深学生对公倍数和最小公倍数现实意义的理解。

现在我们再来帮助小朋友解决问题。教师出示图,一些小朋友在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。”请大家猜猜这些学生可能有几人?

细细体会班长说的话,你知道了什么?学生独立思考,解决。全班交流想法,要求总人数就是求6和8的公倍数。

引导学生介绍用“大数翻倍法”等,简化步骤,不断改进方法。注意学生用省略号表示不同的可能性。

师:如果这些学生的总人数在50以内,那么他们最多有几人?我们所求出的“48人”是6和8的最大公倍数吗?为什么?为什么不用学习求最大公倍数呢?(因为每一个数的倍数的个数都是无限的,两个数的公倍数的个数也是无限的。因此,两个数没有最大的公倍数。)

3、归纳求最小公倍数的方法。

师:想一想找“共同的休息日”和“总人数”的过程,说一说可以怎样求两个数的最小公倍数?(①找倍数:从小到大依次找出各个数的倍数;②找公有:把各个数的倍数进行对照找出公有的倍数;③找最小:从公有的倍数中找出最小的一个。)

4、看书22--23页内容,你还有什么问题?

师:观察一下,为什么6和8这两个数不相同,却可以写出相同的公倍数呢?公倍数与原有的这两个数有什么关系?公倍数与它们的最小公倍数又有什么关系?

教师画出数轴表示6和8的倍数,并可生动地比喻6宝宝步子小,要走3次才能到达24的位置。而8宝宝步子大,只要走两次就到达24的位置。到达24的位置后,6宝宝和8宝宝就碰面了。可见公倍数24是6和8的不同倍数。

三、解决问题,深化理解

1、互质数和倍数关系的数的最小公倍数

师出示书第90页的“做一做”,让学生独立解决,填写在书上。

观察一下这里的每一组中的两个数有什么关系?

它们的最小公倍数与这两个数有什么关系?

(提示:3和5这两个数有什么关系?3和5的公倍数有哪些?最小公倍数是几?15与3、5这两个数有什么关系?)

提问:根据刚才的分析,你有没有发现什么规律?

(当两数成倍数关系时,较大的数就是它们的最小公倍数。当两数只有公因数1时,这两个数的积就是它们的最小公倍数。)

2、打电话游戏。

师:梁老师家的电话号码是一个七位数,从高位到低位依次是:(1)2和8的最小公倍数(2)最小的质数(3)既是6的倍数又是6的因数(4)5和15的最大公因数(5)既是偶数又是质数(6)比所有自然数的公因数多7的数(7)2和3的最小公倍数。你能说说老师家的电话吗?

师:你是怎样知道的?

师:你们分析得多好啊!真了不起!

四、课堂小结

今天你学到了什么?收获最大的是什么?你有什么学习经验介绍给大家?

五、作业

运用这单元学习的知识,也给你的朋友编一个谜语,让他们猜猜你们家的电话号码。

归纳总结: 5

找最小公倍数的方法

(1)先分别找出两个数的倍数

(2)再找出两个数的公倍数

(3)其中最小的一个就是它们的最小公倍数。

最小公倍数教学设计 6

教学内容:

两个数的公倍数和最小公倍数。(课本52页例题及相关习题)

教学目的:

1、结合具体情境,使学生理解公倍数和最小公倍数。

2、探索昭公倍数的方法,会利用列举,短除法等方法找出两个数的或几个数的公倍数和最小公倍数。

3、在探索昭公倍数的过程中,培养学生的分析,归纳能力,发展学生的创新精神。

教学重点:

探索找公倍数的方法

教学难点:

经历找两个数的公倍数和最小公倍数的过程。

教具准备:

多媒体幻灯片

教学过程:

一。复习导入

1、公因数。最大公因数。

同学们,前面第一单元中,我们学习了因数,倍数的有关知识,这一单元中,我们找了公因数和最小公因数,下面请大家回顾一下什么是因数,最大公因数。

2、倍数

(1)说说下列数中谁是谁的倍数(指名说)

5×8=40 7×9=63

(2)写出的倍数。

2的倍数有:

3的倍数有:

(3)2的最小倍数是?3的最小倍数是?一个数最小的倍数是什么?有没有最大的倍数?(明确:一个数倍数的个数是无限的,一个数最小的倍数是他本身。)3.导入

今天我们一起来探索学习:找最小公倍数。(板书)二。探索交流。获取新知。

1、写出50以内的倍数。

(1)学生自己寻找。

(2)汇报结果

4的倍数有:6的倍数有:

(3)用“△”标出4的倍数,用“○”标出6的倍数。 2.找出的公倍数。

(1)这些数中既标有“△”又标有“○”得有那几个?他们是什么数?

(2)既是4的'倍数,又是6的倍数,你能给她一个

名称吗?3.明确最小公倍数

在这些数中最小的是什么?可以给他一个名称吗?4.想一想:有最大公倍数吗?

5、学生试着消小结:公倍数和最小公倍数。 6.师生共同总结。

三。总结方法,实际应用。

在寻找最小公倍数使用的什么方法?(列举法)

(1)课本51页。一题。

(2)课本52页二题。

四。1.求下列几组数的最小公倍数。

(1)3和6

5和10

7和14发现:

(2)2和3

5和7

3和7发现:

(3)4和5

9和8发现:2.总结规律

3、介绍短除法(18 24)

五总结收获。

今天的学习你有什么收获?

六。作业。

讲授新课 7

1、我们已经知道了什么是最小公倍数,那么我们就一起来试一试

(1)、找出6和9的最小公倍数

6的倍数:6 ,12 ,18,24 30,36……

9的倍数:9,18,27,36……

6和9的公倍数:18,36……

6和9的最小公倍数:18

教师:同学们会找两个数的最小公倍数了吗?

学生:会

(2)求3和2的最小公倍数

全班交流并板书。

还可以这样表示

3的倍数 2的倍数

2

(3)怎样求6和8的最小公倍数?

小组交流、探讨“前置小研究” 8

1、 要求小组内互相解决出现的错误,并能说说自己的方法;

2、要求学生说说:

(1)什么是公倍数和最小公倍数?

(2)两个数的公倍数的个数是怎样的?

教学内容:教科书五年级下册第22--23页,练习四1--4题。 9

教学目标:

1、结合具体情境,体会公倍数和最小公倍数的应用,理解公倍数和最小公倍数的意义。

2、探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

3、培养学生推理、归纳、总结和概括能力。

最小公倍数教学设计 10

教学内容:

找最小公倍数

教学目标:

1、使学生理解公倍数和最小公倍数的含义。

2、使学生会利用列举法找出两个数的公倍数和最小公倍数。

3、使学生初步掌握求两个数最小公倍数的方法,培养学生学习数学的兴趣。

教学重点:

使学生掌握求两个数最小公倍数的方法。

教学难点:

运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。教学过程:

(一)复习导入,初步感受

1、复习

师:同学们,我们已经认识了倍数,谁能举例说几个3的倍数?生:3的倍数有3、6、9、12、15……。师:2的倍数呢?

生:2的倍数有2、4、6、8、10……。师:3和2的最小倍数都是几?生:都是他们本身。

师:那么,为什么在说倍数时要加省略号?

生:因为一个数的倍数的个数是无限的,所以要加省略号。

2、导入新课(板书课题)

(二)教学新课

1、出示课件教学新课

师:下面请同学们用△圈出妈妈的休息日,用○圈出爸爸的休息日(学生操作圈数)

师:妈妈的休息日有哪几天?(4,8,12,16,20,24,28)它们都是()的倍数。(4的倍数)

师:爸爸的休息日有哪几天?(6,12,18,24,30)它们都是()的倍数。(6的倍数)师:他们共同的休息日有哪几天?(12,24)它们都是()和()共同的倍数。(4和6共同的倍数)

师:谁能为4和6共同的倍数取个名字?(4和6的公倍数)师:在4和6的公倍数中,最小的一个是几?谁来给它取个名字?(12日,最小公倍数)

2、反思总结,归纳方法。

师:请同学们回顾一下,刚才我们通过找“共同休息日”的方法。谁能说说怎样求两个数的最小公倍数?

(1)先分别找出两个数的倍数;

(2)再找出两个数的公倍数;

(3)其中最小的一个就是它们的最小公倍数。

2、试一试

师:让学生顺序写出4和8的几个倍数,他们公有的倍数是哪几个?其中最小的是多少?

师:那么,有没有最大公倍数呢?(师生共同讨论)

(三)练习

1、教材第68页的做一做。

2、找出下面各组数的最小公倍数

2和6 4和8 3和4 8和9

(四)总结收获

师:通过今天的学习你有什么收获?

师(小结):今天不仅很好的理解公倍数和最小公倍数的含义,还掌握了求公倍数和最小公倍数的方法。

(五)当堂检测:

练习十七的第2题、第4题。

教学目标 11

1.知识与技能:解公倍数、最小公倍数的概念,理解、掌握求两个数最小公倍数的方法。

2.过程与方法:使学生经历探索理解公倍数、最小公倍数的概念,求两个数最小公倍数的方法,培养学生的迁移能力和分析研究问题的能力。

3.情感、态度与价值观(育人目标):在师生共同探讨的学习过程中,激发学生的学习兴趣,培养学生良好的学习习惯。

教学目标 12

1.知识与技能:理解公倍数、最小公倍数的概念,理解、掌握求两个数最小公倍数的方法。

2.过程与方法:使学生经历探索理解公倍数、最小公倍数的概念,求两个数最小公倍数的方法,培养学生的迁移能力和分析研究问题的能力。

3.情感、态度与价值观(育人目标):在师生共同探讨的学习过程中,激发学生的学习兴趣,培养学生良好的学习习惯。

重点难点:求两个数最小公倍数的方法。

最小公倍数教学设计 13

教学目标:

1、结合具体情境,体会公倍数和最小公倍数的应用,理解公倍数和最小公倍数的意义。

2、探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

3、培养学生推理、归纳、总结和概括能力。

教学重点:

学会用列举法找出两个数的最小公倍数。

教学难点:

理解公倍数、最小公倍数的意义。

教学过程:

一、以趣激疑

比比谁的声音亮?请两组学生报数,并请报到2、3倍数的同学分别起立。问:你发现了什么?为什么有些人起立了两次?让学生初步感受有些数既是2的倍数又是3的倍数。(教师引导学生用“既是…又是…”来表达想法。)

师:6、12、18、24……既是2的倍数又是3的倍数,我们就可以说6、12、18、24……是2和3的公倍数。(师板书“公倍数”)

师:同学们,今天我们就一起来研究有关“公倍数”的问题。

二、创设情境,感知概念

1、两个数的公倍数和最小公倍数的概念教学

师:同学们,你们喜欢阿凡提吗?为什么喜欢他?(他聪明、机智、幽默、……)今天老师也给你们讲个阿凡提的故事:从前有个长工,在巴依老爷家干了一年也没有拿到一个铜板。长工们于是自发地组织了起来并邀请阿凡提帮他们去向巴依老爷讨工资。巴依老爷含着烟斗冷笑着说:“工资我可以给你,不过我的钱都在我的账房先生那里。从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。到了某天,他真的从巴依老爷家帮长工拿到了工钱。

请大家想一想,阿凡提是哪天去巴依老爷家的?他用的是什么办法找到这个日期的?你准备如何解决这个问题?

让学生独立思考,整理解决问题的思路,并在四人小组里交流、讨论。全班汇报,交流想法。(同学们达成共识:要先分别找出巴依老爷、账房先生的休息日、再找出他们两人的共同休息日。)

同桌两人合作,通过在日历上圈一圈、本子上写一写等方式,寻求解决的办法。师巡视,并重点引导学生辨析休息日的日期应是4和6的公倍数,而不是3和5的公倍数。

全班交流,汇报。

师板书:巴依老爷的休息日:4、8、12、16、20、24、28

账房先生的休息日:6、12、18、24、30

他们八月份的共同休息日:12、24

这些数据说明了什么?如果阿凡提8日这天去巴依老爷家行吗?那18日这天去巴依老爷家行吗?引导学生明确阿凡提要把事情办好,只有在巴依老爷和账房先生都在家休息的日子去才行。所以阿凡提可以在12日和24日这两天去找巴依老爷和账房先生。

你们猜猜阿凡提会哪一天去巴依老爷家呢?

师板书:最早的共同休息日:12

师:你们真聪明,用自己的智慧解决了问题。现在我们一起用数学的眼光,来看看巴依老爷和账房先生的休息日的数据有什么特点?根据学生的发言,教师把板书“巴依老爷的休息日、账房先生的休息日、他们八月份的共同休息日”相应地改写成“4的倍数、6的倍数、4和6的倍数”。

师:“4和6的倍数”还可以怎么说?(4和6的公倍数)“公”是什么意思?(你有我也有、共有)数据“12”是什么?(4和6的最小公倍数)

你还有其他的表示方式吗?(集合圈的图示方式)

谁能说说什么是公倍数?什么是最小公倍数?教师板书课题。

2、加深学生对公倍数和最小公倍数现实意义的理解。

现在我们再来帮助小朋友解决问题。教师出示图,一些小朋友在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。”请大家猜猜这些学生可能有几人?

细细体会班长说的话,你知道了什么?学生独立思考,解决。全班交流想法,要求总人数就是求6和8的公倍数。

引导学生介绍用“大数翻倍法”等,简化步骤,不断改进方法。注意学生用省略号表示不同的可能性。

师:如果这些学生的总人数在50以内,那么他们最多有几人?我们所求出的“48人”是6和8的最大公倍数吗?为什么?为什么不用学习求最大公倍数呢?(因为每一个数的倍数的个数都是无限的,两个数的公倍数的个数也是无限的。因此,两个数没有最大的公倍数。)

3、归纳求最小公倍数的方法。

师:想一想找“共同的休息日”和“总人数”的过程,说一说可以怎样求两个数的最小公倍数?(①找倍数:从小到大依次找出各个数的倍数;②找公有:把各个数的倍数进行对照找出公有的倍数;③找最小:从公有的倍数中找出最小的一个。)

4、看书88——89页,你还有什么问题?

师:观察一下,为什么6和8这两个数不相同,却可以写出相同的公倍数呢?公倍数与原有的这两个数有什么关系?公倍数与它们的最小公倍数又有什么关系?

教师画出数轴表示6和8的倍数,并可生动地比喻6宝宝步子小,要走3次才能到达24的位置。而8宝宝步子大,只要走两次就到达24的位置。到达24的位置后,6宝宝和8宝宝就碰面了。可见公倍数24是6和8的不同倍数。

三、解决问题,深化理解

1、互质数和倍数关系的数的最小公倍数

师出示书第90页的“做一做”,让学生独立解决,填写在书上。

观察一下这里的每一组中的两个数有什么关系?

它们的最小公倍数与这两个数有什么关系?

(提示:3和5这两个数有什么关系?3和5的公倍数有哪些?最小公倍数是几?15与3、5这两个数有什么关系?)

提问:根据刚才的分析,你有没有发现什么规律?

(当两数成倍数关系时,较大的数就是它们的最小公倍数。当两数只有公因数1时,这两个数的积就是它们的最小公倍数。)

2、打电话游戏。

师:许老师家的电话号码是一个七位数,从高位到低位依次是:

(1)2和8的最小公倍数

(2)最小的质数

(3)既是6的倍数又是6的因数

(4)5和15的最大公因数

(5)既是偶数又是质数

(6)比所有自然数的公因数多7的数

(7)2和3的最小公倍数。你能说说老师家的电话吗?

师:你是怎样知道的?

师:你们分析得多好啊!真了不起!

四、课堂小结

今天你学到了什么?收获最大的是什么?你有什么学习经验介绍给大家?

五、作业

运用这单元学习的知识,也给你的朋友编一个谜语,让他们猜猜你们家的电话号码。

教学反思

一、尊重学生的数学现实,巧妙设计

新课程强调:数学学习应该是一个思维活动,而不是程序操练的过程。学生总是带着自己的数学现实参与数学课堂,不断地利用原有的经验背景对新的问题做出解释,进行加工,从而实现对数学知识、数学思想方法的意义建构。所以,作为教师在预设数学活动时,要充分尊重学生的数学现实,不拘于教材,不照本宣科,巧妙设计,拓宽探索的空间,提高课堂教学的有效性。

本节课在教学设计中,我能够根据教学的需要,大胆地改变教材的呈现形式,调整了教材的资源,激发了学生产生学习和探究的欲望。

上课一开始,通过设计“报数”的活动,让学生体验到有些同学之所以站了两次,是因为他们的号数既是2的倍数又是3的倍数,从而在自然而然的活动参与中,使学生体会到:“两个不同的数存在着公倍数”。

接着,通过阿凡提的机智故事,引导学生在解决巴依老爷和账房先生的共同休息日的问题中,从数学的角度去观察和发现他们各自的休息日数据上的特点,从而得出巴依老爷的休息日就是4的倍数,账房先生的休息日就是6的倍数,他们两人的共同休息日就是4和6的公倍数……这样的教学设计,不像教师讲解学生接受那样直接明快,确实“费时”,但是并不“低效”。学生在这一教学过程中,从各自的已有经验出发,体验了“最小公倍数”概念的发生、形成的过程,经历了生动活泼的、主动的、富有个性的数学建构活动,获取了对数学概念的理解,而且还在思维能力、情感态度与价值观等多方面得到了进步和发展。

二、提升学生的数学现实,画龙点睛

数学学习是新知识与学生已有“数学现实”互相作用融为一体的过程,数学学习的任务就是要不断丰富和提高学生所拥有的数学现实。所

本节课在教学中虽然充分地展现了学生在解决“求两个数的最小公倍数”问题的不同方法和思维策略,但作为教师应该引导学生在共同的数学交流中,通过经验分享、方法交换、思维沟通等实现融合,并在比较中求同存异,实现由个性化认识向共性化知识的有效转变。面对学生众多不同的解题方法如:列举法、集合图表示法、小数翻倍法等,教师可以引导学生通过对比、讨论,对各种解题方法的优劣性重新进行认识,并在交流的过程中实现方法的有效优化。可通过展开比赛,分大组分别写出50以内4和6的倍数等活动,让学生自行发现,在相同的取值范围内,较大数的倍数比较少,较小数的倍数比较多。从而引导学生对小数翻倍法进行修正,改为大数翻倍法。大数翻倍法简便易学,便于心算,是一种比较好的求最小公倍数的方法,应通过教学活动让每个学生都切实地理解和掌握。

此外,本节课的例2在设计上存在着与例1重复、低效的弊端,应把例2的数字改为“4和8”,从而提升学生的思维层次,引导学生再次从观察数据的特点入手,找到求最小公倍数的更直接有效的方法。通过这样的修正,整节课的容量将更加丰富、更有层次性、更有思考和探究的空间。

教学过程: 14

一、复习旧知识

1、写出下面各数的倍数

3的倍数有:()

2的倍数有:()

2、学生汇报填写结果,教师板书记录

3、说一说,你对倍数有什么理解?

学生回答

创设情境 15

出示阿凡提的'故事

1、教师:请大家想一想,阿凡提是哪天去巴依老爷家的?他用的是什么办法找到这个日期的?我们如何解决这个问题?

教师:这就是我们这节课要学习的内容:最小公倍数(板书)

2、出示日期,让学生找出巴依老爷休息的日期和标出账房先生休息的日期

3、展示问题(让学生回答)

(1)老渔夫休息的日子有哪几天?4,8,12,16,20,24,28 它们都是()的倍数

(2)小渔夫休息的日子有哪几天?6,12,18,24,30

它们都是( )的倍数

(3)老渔夫和小渔夫同时休息的日子有哪几天?12,24

它们是( )和()共同的倍数

(4)我最早应在几号去拜访他们?12

4、总结问题后,导出课题:最小公倍数

5、出示问题:(通过上面的问题以及以前学过的最大公因数的概念我们可以知道)

(1)什么叫公倍数?

(2)什么叫做最小公倍数?

6、学生:回答

教师:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

最小公倍数教学设计 16

一、教材简析

《最小公倍数》是人教版五年级下册第88-90页的教学内容,是在学生已经了解了倍数、因数以及公因数和最大公因数的基础上教学的。这一内容的学

二、教学目标及教学重、难点

根据课程标准和教学内容并结合学生实际,我认为这节课要达到以下的教学目标:

1、理解算理并学会计算两个数的最小公倍数,通过对最小公倍数算理的探究,培养和发展学生的逻辑思维能力。

2、能运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。教学重点:公倍数与最小公倍数的概念建立。学会求两个数的最小公倍数。

教学难点:理解求两个数最小公倍数的算理,能运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。

三、设计理念

数学教育的出发点和归宿是学生熟悉的现实生活。让学生从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过自己的发现去学习数学。进行集合思想和极限思想的渗透,感受数学化的简洁美。而探究性学习又是新一轮基础教育课程改革所倡导的学习方式。

在教学中,通过创设情境,让学生自主发现问题,获得能力发展和深层次的情感体验,在得到抽象化的数学知识之后,及时应用到新的现实问题中去,从而渗透数学归纳思想,达到方法的多样化,个性化。学生构建数学概念的过程不能简单“告知”,通过引导,让学生亲自操作和体验,在解决问题中初步感知公倍数、最小公倍数的特点,明晰求最小公倍数的基本。让学生通过具体的操作和交流活动,认识公倍数和最小公倍数。思路,在富有生命活力的再创造过程中,主动建立概念,完成数形结合思想的渗透。

四、教学过程

(一)故事引入感知概念

出示关于阿凡提的故事,巴依老爷说:“从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。那么在这一个月里,阿凡提可以选哪些日子去呢?你会帮他们把这些日子找出来吗?”同桌讨论,学生合作在日历卡上找出巴依老爷和账房先生的共同休息日。

根据学生的汇报,教师完成板书:

巴依老爷的休息日4、8、12、16、20、24、28

账房先生的休息日6、12、18、24、30

他们共同休息日12、24

最早的休息日12

【设计意图】以故事的形式提出问题,让学生通过解决这个生动有趣的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验。学生在解决问题中初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。这样,不仅激发了学生学习的兴趣,而且让学生感受到数学与生活是紧密联系的,体会到数学源于生活又高于生活的特点。

(二)加深理解总结方法

1、公倍数和最小公倍数的概念教学

从“巴依老爷的休息日”、“账房先生的休息日”、“他们共同休息日”、“最早的休息日”引出“4的倍数”、“6的倍数”、“4和6的公倍数”、“4和6的最小公倍数”)。教师完成板书

巴依老爷的休息日(4的倍数)4、8、12、16、20、24、28账房先生的休息日(6的倍数)6、12、18、24、30??他们共同休息日(4和6的公倍数)12、24

最早的休息日(4和6的最小公倍数)12

【设计意图】怎样能让学生深刻理解最小公倍数的意义,是本节课的一个重点。学生构建数学概念的过程,决不能是简单“告知”的过程,以概念为本的学习需要经历一些经验性的活动过程。通过学生亲自操作和体验,在一种富有生命活力的再创造过程中,主动建立概念。完成数形结合思想的渗透。

2、用集合圈表示倍数、公倍数、最小公倍数。首先让学生用数学上的集合圈的形式表示4的倍数和6的倍数。(课件出示集合圈)。然后利用课件使集合圈重叠一部分。给学生问题:如果这两个集合圈这样放在一起,相交的这一部分表示什么呢?(课件出示集合圈的动态过程)

【设计意图】根据弗赖登塔尔“数学是一项人类活动”的观点,从学生熟悉的生活开始,从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过学生自己的发现去学习数学。进行集合思想和极限思想的渗透,感受数学化的简洁美。

(三)巩固运用

再求新法(本环节为两个数的最小公倍数的算理和方法引探是教学难点)

出示同学排队的题目:六(1)班同学在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。这些学生至少有几人?”问题出示后,给学生独立思考的时间,学生很快用列举法求出6和8的最小公倍数。然后我预设让学生寻找更简便的大数翻倍法,以及进一步探索用分解质因数的方法求最小公倍数,先把6和8分解质因数,观察质因数之间的关系,发现2是它们公有的质因数,而3和4是它们各自独有的质因数,从而突破难点。使学生理解用分解质因数求最小公倍数就是全部公有质因数和各自质因数的乘积。而短除法实际就是分解质因数的简便算法,并且引导学生发现,短除号左边的数就是它们的公有质因数,下面的数就是相对应数各自独有的质因数。在学生交流各自的方法后。我们可以把这些数在数轴上表示出来。上面表示6的倍数,下面表示8的倍数。所圈重合的点是6和8的公倍数。(教材中出现了数轴上表示倍数的方法,考虑到学生想不到这种方法,我参与活动中,最后展示这种图形结合的方法。)

【设计意图】用富有生活问题的情境,激发学习兴趣。探究学习是新一轮基础教育课程改革所倡导的学习方式。在教学中,创设一种情境,通过学生自主发现问题,获得能力发展和深层次的情感体验。渗透数学归纳思想,体现方法的多样化,个性化。

(四)解决问题深化理解

在列举法的基础上,发现特殊关系的两个数的最小公倍数的规律。由一道生活问题结束本课。(课件出示一道生活情境题)

【设计意图】数学教育的出发点和归宿都应当是学生熟悉的现实生活。学生得到抽象化的数学知识之后,应及时把它们应用到新的现实问题中去。

引课:今天我们就来探究最小公倍数(板书课题 17

1、出示书P88例1题

一种墙砖长 3 dm,宽 2 dm。如果用这种墙砖铺一个正方形 (用的墙砖都是整块),正方形的边长可以是多少分米? 最小是多少分米?

(1)、学生进行讨论:

(2)、出示分别用6个、24个、54个长方形摆成的边长是6分米、12分米、18分米的正方形的动画

(3)、学生反馈:这个正方形的边长必须既是 3 的倍数,又是 2 的倍数。

(4)、还可以怎样表示求3和2的最小公倍数?

①求3和2的最小公倍数,还可以用用集合圈的方法表示 ②全班交流并板书。

可以铺出边长是 6 dm,12 dm,18 dm,··· 的正方形,最小的正方形边长是 6 dm。

3的倍数 2的倍数

6, 6 是最小的公倍数,叫做它们的最小公倍数。

2、考考你:用新学的知识解决问题:完成P89做一做

3、教学例2:怎样求 6 和 8 的最小公倍数?

(1)学生独立完成,全班交流。

(2)学生交流方法有(交流时课件演示)

①列举法:先找倍数,再找公倍数,最后找出最小公倍数。 例如:6 的倍数:6,12,18,24,30,36,42,48,?

8 的倍数:8,16,24,32,40,48,?

6 和 8 公倍数:24,48,?

6 和 8 的最小公倍数:24

②用图表示也很清楚。

③6 的倍数中有哪些是 8 的倍数呢?

你还有其他方法吗?和同学讨论一下。

教师介绍:①大数翻倍法:8,16,24,?6 和 8 的最小公倍数:24 ②分解质因数法:

数的乘积。

4、通过观察,想一想:①两个数的公倍数的个数是怎样的?②两个数的公倍数和它们的最小公倍数之间有什么关系?

5、考考你会求两个数的最小公倍数吗?

完成书P90做一做:求下面每组数的最小公倍数,看看有什么发现? 3 和 6 2 和 8 5和 6 4 和 9

6、交流你的发现:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,较大数是两数的最小公倍数。

7、我能很快说出每组数的最小公倍数。

8和9() 24和8 () 30和5( ) 4和12() 36和4()48和6 () 17和13() 14和15() 23和24( )

教学设计 18

(一)、小组长汇报“前置小研究”完成情况

怎样求3和2的最小公倍数?

第一步:3的倍数有:()

2的倍数有:()

第二步:3和2的公倍数有:( )

第三步:3和2的最小公倍数是:()

教学重点:学会用列举法找出两个数的最小公倍数。 19

教学难点:理解公倍数、最小公倍数的意义。

最小公倍数教学设计 20

教学目标

1、在原有知识结构的基础上,通过自主建构,形成新的知识结构,掌握最小公倍数的意义及求法。

2、培养学生的迁移、判断、推理、分析能力。学会反思,学会合作。

3、培养学生的积极学习情感,学会欣赏他人。

教学过程

一、再现原有知识结构

1、用短除法求30与45的最大公约数

独立完成,一人板演,集体订正。

师提问:怎样用短除法求两个数的最大公约数?

(评析:根据教材的内容与学生的实际需要设计课堂引入环节,实实在在,利于学生再现原有知识结构,为构建新的知识结构做好了知识准备与心理准备。)

二、构建新的知识结构

1、揭示课题

今天我们来研究最小公倍数。(板书课题)

2、明确意义

师:�

师:说的很好,你很会扩写。(生笑)

生2:两个数公有的倍数叫做它们的公倍数,其中最小的一个是它们的最小公倍数。

生3:公倍数可以是两个数公有的倍数,也可以是三个或四个数公有的倍数。我认为应改成几个数公有的倍数叫做它们的公倍数,其中最小的一个是它们的最小公倍数。师:太好了,谁能再说一遍。

生说完师出示,齐读。

(评析:有了最大公约数的认知基础,学生很容易通过迁移实现对最小公倍数这一概念的自主建构。因此教师直接揭示课题,让学生根据自己的理解,互相补充完善最小公倍数的概念,取得了很好的效果。)

3、探讨求法

出示:求4与5的最小公倍数。

师:� (师板书:短除法)

师:oh,你会吗?(生摇头。受求最大公约数的方法的影响,直觉让他有此想法。这种直觉思维值得呵护。)暂时不会不要紧,我们可以进一步探讨研究。还有其他方法吗?

生2:用分解质因数的方法,但我暂时没想出来。(师板书:分解质因数)

生3:,他们俩的方法太麻烦,我觉得把两个数直接相乘就行了。(师板书:直接相乘)

其余学生露出惊奇与赞同的表情。

师:�

生5:用直接相乘的方法求4与5的最小公倍数是对的,但求其他两个数的最小公倍数就不一定对了。如10与20,10×20=200,但它们的最小公倍数是20。

师:看来你的方法不能完全成立。

生3:很多时候我的方法是对的。

师:所以老师建议你课后继续研究:什么时候?你的方法是正确的?

师:还有其他见解吗?

生6:我认为可以用短乘法。(学生都很好奇。)

师:短乘法!我们还真实第一次听说,你能给大家讲讲吗?

该生主动走上讲台,边板书边讲:如10与20都2得20与40,再乘3得60与120,(板书如下)

2 × 10 20

3 × 20 40

60 120

生(很多):永远求不出来。

生6茫然

师:你的方法很有创意,但是……

生7:干脆先写出一个数的倍数,再写出另一个数的倍数。通过比较找出两个数的最小公倍数。

师:行吗?

生:行!

师:请你们用这种方法求出4与6的最小公倍数。

学生独立完成,一人板演。

4的倍数:4、8、12、16、20……

6的倍数:6、12、18、24、30……

4与6的最小公倍数是12

集体订正后,师问:用集合圈怎样表示?

学生独立完成,一人板演。板书如下:

4的倍数 6的倍数

4 8 6 18

16 20 12 24 30

… …

4与6的最小公倍数

师:对吗?

生(齐答):对!

师皱眉:仔细看一看。

生:中间交叉的地方不能只填最小公倍数,它们公有的地方应填它们的公倍数。还要填24 36…

师:对!做任何事情都要力求准确!(板书:24 36…)

生:我发现4与6的公倍数就是最小公倍数的1倍、2倍、3倍、4倍…,有无数个。

师:你的发现很有价值。正是如此,我们有必要研究最小公倍数,公倍数的个数是无限的,没法研究最大公倍数。

生6:这种方法太麻烦,我仍能用短乘法。(生6不服气的走上讲台,边板演边讲。)

2× 4 6 ←只用6乘

3× 4 12 ←只用4乘

12 12

师:恭喜你!你终于研究出来了。

生:他是已知4与6的最小公倍数是12,又瞎凑的。(其他同学异口同声。)

生:似乎有这种嫌疑。(生笑)但我们评价别人,要指出不足,更要学会发现有价值的东西。同学们想一想:为什么用4乘3,而用6乘2呢?

小组讨论

生:我们小组把4与6分解质因数,4=2×2,6=2×3,比较4与6的质因数我们发现4比6少了一个质因数3,,因此用4去乘它缺少的3。6比4少了一个质因数2,而用6去乘它缺少的2。

师:你们小组善于利用学过的知识解决新问题。能讲得再慢一点吗?

生:我能很形象的讲清楚。(主动走上讲台,边板书边讲。)4与6的最小公倍数肯定要4与6所有的质因数,4=2×2,6=2×3,所以4与6的最小公倍数应含有两个2,一个3,也就是2×2×3=12。因此要求4与6的最小公倍数只要用(2×2)×3或2×(2×3)。(学生露出会意的笑容,听课教师也情不自禁的鼓起掌来。)

师:这么难的知识被你讲得形象生动,真了不起!同学们刚才用的方法就是用分解质因数的方法求两个数的最小公倍数。先把这两个数分解质因数,找出它们公有的质因数,再找出它们独有的质因数,然后用它们公有的质因数去乘它们独有的质因数就求出了它们的最小公倍数。(板书如下)

4= 2 ×2

6= 2 × 3

4与6的最小公倍数是2×2×3=12

独立完成练习十五第一题

提问:为什么用2×3×5×7?

师:刚才有的同学提出用短除法求两个数的最小公倍数,下面就以小组为单位研究短除法。

出示例2:求18与30的最小公倍数

小组合作完成,一组板演并讲解:先用它们公有的质因数2去除,再用3去除,3与5互质。所以18与30的最小公倍数是2×3×3×5=90。(生讲解师板书)

公有的质因数→ 2 18 30

公有的质因数→ 3 9 15

3 5 ←互质数

师提问:用什么数去除?除到什么时候为止?把哪些数相乘?为什么?

做一做 用短除法求30与42的最小公倍数。

独立完成,说说解答过程。

(评析:“探讨求法”是本节课的重点,同时又是难点,但学生思维活跃,情绪高昂,不时有惊人的发现。教师是如何使这节枯燥的数学课变得生动有趣呢?我想主要是实现以下“四化”:

1、探索自主化。学生只有感觉到自己是学习的主人,而不是被当作灌输的容器,才能真正激发他们的学习热情。最小公倍数的求法很多,而且利用短除法与分解质因数的方法算理很难理解。教师直接把这一问题抛给学生,这样,不同的学生就会有不同的想法,教师却从不给出结论性的评价,而是始终鼓励他们大胆猜测验证,互相补充说明,学生真正投入探究学习的氛围中,体验着学习给他们带来的快乐。

2、教学情感化。积极的学习情感是学生自主学习的不竭动力。教师不仅具有敏锐的观察分析能力,善于发现学生发言中的优点,更善于把这种发现转化为对学生的鼓励赏识,这样学生感觉到自己的探究,自己的发现被关注,被赏识,才会始终保持积极的学习情感。

3、师生平等化。教师只是先生—先于学生生成知识,因此教师要蹲下来看学生,与学生处在同一互动平台,共同发展,才能真正实现教学相长。在平等的氛围下学生才敢于主动的表达自己的发现,教师也才会不断的根据学生的发现调整教学,成为学生学习的助手。

4、评价多元化。学生自评利于学生反思元认知,学生互评利于学生拓展思维,因此学生能评价的教师决不越俎代庖,但学生评价有时会片面、肤浅甚至偏激。这时又要充分发挥教师评价的重要作用,使学生的探究学习始终围绕着有价值的问题展开。这节课教师正式调动多种评价手段,使学生真正成为学习的参与者、反思者。)

三、巩固新的知识结构

练习十五第二题前4题 第三题 第四题

四、小结

谈谈这节课的学习感受

五、作业 练习十五第二题后4题

最小公倍数教学设计 21

教学目标:

1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

2.培养学生的观察能力、分析能力和归纳概括能力。

3.培养学生良好的学习习惯。

教学重点:

使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

教学难点:

使学生学会并理解求两个特殊数的最小公倍数的方法。

教学实录:

一、引入:

师:同学们,现在是什么季节?

生:春天。

师:对,春天来了,草绿了,花开了,蜜蜂们开始忙碌起来了,其实在蜜蜂的王国里也有许多有趣的数学问题。大家看,(课件出示)蜜蜂们每天白天都忙碌的采花粉酿花蜜,但是,由于这个蜜蜂王国的日益壮大,蜜蜂们越来越多,每次大家同时采完蜜回来往往非常拥挤,这可怎么办呢?于是蜂王就想了一个办法。

点评:教师努力营造让学生爱学、乐学的课堂教学环境,密切联系有趣的生活实例,通过课件演示,创设教学环境,使学生在愉快的氛围中学习数学,同时使本课的数学知识赋予一定的价值

二、新授

1.(1)师:蜂王把它们分成了2组,1组每30分钟回来一次,1组每40分钟回来一次。它想这样可就解决问题了。同学们,你们说蜂王是否解决了这个问题?

生①:解决了。

生②:没有解决,过一段时间,它们会一起回来的。

师:有的同学认为这个办法可以,有的认为不行。请你们自己证明一下,在证明时,你可以利用手中的学具,也可以用你喜欢的其他方法。

(2)学生讨论

(3)学生汇报

师:哪个小组来展示你们的研究成果?

生①:用纸条证明,(学生在展台演示)每隔30分钟回来一次的,第四次回来要120分钟,每隔40分钟回来一次的,第三次回来也要120分钟,当120分钟时它们会同时回来,发生碰撞,所以不行。

师:这种方法形象直观,非常好,还有不同和方法吗?

生②:用数轴证明。(学生在展台演示)

师:大家认为这种方法怎么样?

生:简洁清楚。

师:有的小组用的是摆纸条的方法,有的小组用的是数轴表示的方法,都十分形象,还有不同的方法吗?

生③:找倍数的方法证明。30的倍数有:306090120;40的倍数有:4080120,我发现它们有共同的倍数120,所以第120分钟它们会相撞。

板书:30的倍数:306090120

40的倍数:4080120

(4)师小结:刚才同学们采用了不同方法,但都是先找出30和40的倍数,从而发现它们有公有的倍数120,看来是真的不行。

2.师:咱们换一个数试试。一组60分钟回来一次,一组90分钟回来一次。请同学们再来证明一下。

学生验证。

学生汇报。

生:60的倍数有:60120180;90的倍数有:90180。所以在180分钟时它们会相遇。

师:恩,还是不行,我们发现60和90也有公倍数。

3.师:那是不是任意两个数都有公倍数呢?请同学们在小组里交流一下。

生:任意两个数都有公倍数,例如17和18的公倍数就是它们两个数的乘积。

师:通过刚才同学们的汇报我们可以看出:任意两个数都有公有的倍数,也就是公倍数。什么是公倍数?

生:两个数公有的倍数就是他们的公倍数。

师:公倍数有多少个?

生:有无数个,找到两个数的一个公倍数,用它去乘2、乘3……所得的积一定是这两个数的公倍数。

师:我们发现任意两个数都有公倍数,而且每组公倍数的个数都是无限的。那么三个数之间是否也有公倍数?四个数呢?五个数呢?

生①:举例:2、4和5的公倍数是20。

生②:无论几个数,只要相乘,它们的乘积一定是它们的公倍数。

师:那你能找出最大的或最小的公倍数吗?

生:没有最大的,只有最小的。

师:为什么?

生:因为公倍数的个数是无限的,所以没有最大公倍数。

点评:通过引导学生对具体问题作进一步研究,帮助学生加深对公倍数、最小公数意义的理解,使表象更加清晰。由此让学生亲身经历了一个从具体到抽象的数学化的过程。

4.找最小公倍数

4和85和106和156和94和5

让学生找出每组数的公倍数。

师:4和8你们怎么找得这么快?能给大家说一说你的方法吗?

生:大数要是小数的倍数,大数就是它们的公倍数。

师:你们还能发现了什么?

小组讨论,之后汇报。

生①:如果大数是小数的倍数,那么它们的乘积也是它们的公倍数。

生②:5和10的最小公倍数是10,并不是它们的乘积。

生③:4和5两个数是互质数。互质数的最小公倍数师它们的乘积。

点评:教师直接把找特殊情况下两个数最小公倍数这一问题抛给学生,通过学生练习、让学生不断发现不断改进。不同的学生就会有不同的想法,教师却从不给出结论性的评价,而是始终鼓励他们大胆猜测验证,互相补充说明,学生真正投入探究学习的氛围中,体验着学习给他们带来的快乐。

三、总结

师:通过刚才的学习与练习,我们学会了用列举法求两个数的最小公倍数并且发现了一些特殊数求最小公倍数的方法。

设计思路:

“最大公倍数”是一节概念课,学起来比较枯燥。本课是在学生学习了最大公因数以后进行教学的,最大公因数和最小公倍数虽然属于不同的概念,但它们的学习方法相似。本课设计强调了学习方法的借鉴,让学生借鉴学习最大公因数的方法研究最小公倍数的意义,一开课,我就通过情景导入,既激发了学生的学习兴趣,又使学生在解决蜜蜂回巢的问题中初步理解公倍数和最小公倍数的概念,学会求最小公倍数的基本方法。在找公倍数的过程中,呈现出找法的多样性,引导学生分析出各种方法的优劣,促进了学生思维的个性化发展;然后变换情景中的问题作为进一步学习的材料,引导学生通过多个实例发现其中的规律,加深对公倍数和最小公倍数的概念的理解;最后,通过寻找最小公倍数的练习探索求特殊关系两个数最小公倍数的方法,加深了学生的理解与应用。同时,使学生初步感知从特殊到一般的规律,培养同学之间的协作精神。

评析:本节课虽是概念教学,但学生思维活跃,情绪高昂,学得生动有趣。

1、结合学生实际创设问题情景。“最小公倍数”这一课,与学生的生活实际看似无多大联系,在本堂课的教学中,教师通过对教材内容作适当补充调整,为学生提供了生动有趣的信息,从而构建了一种解决问题的数学课堂。先以故事的形式提出问题,为学生提供了一个“公倍数”的实物模型,让学生借助具体实例,初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。在此基础上,引导学生走进数学,抽象出公倍数、最小公倍数等数学概念。这样的设计,不仅激发了学生学习的强烈兴趣,而且让学生感受到数学与生活是紧密联系的,体会到学习数学源于生活又高与生活的特点。

2、让学生经历知识的形成过程。本节课,教师充分体现了这一新课程理念。如,在获取公倍数、最小公倍数的特征这个环节中,教师为学生创设了一定的情景,然后放手让学生合作解决,教师在为学生提供自主探索空间的同时,鼓励学生个性化的发展,体现了找法的多样性,并注意找法的优化,使学生在体验中不断优化方法,在此基础上抽象出公倍数、最小公倍数的概念。在初步获得所学知识后,教师又巧妙地引发学生更深层次地思考,使学生产生了深刻的体验,从中进一步感悟并理解公倍数和最小公倍数的概念。同时通过自主探究发现互质的两个数的最小公倍数是这两个数的乘积;倍数关系的两个数的最小公倍数是其中较大数。

最小公倍数教学设计 22

教学目标:

理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。

教学重点:

最小公倍数的概念。

教学难点:

两个数最小公倍数的算理。

教法:新授、小组合作、自主探究

学法:练习、自学、小组合作

课前准备:

课件

教学过程:

一、定向导学(3分钟)

(一)复习

1、什么是最大公因数?

2、最大公因数与两个数的质因数之间有什么关系?

3、怎样求两个数的最大公约数?

(二)出示目标

理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。

二、自主学习(6分钟)

自学内容:68-69页内容

自学方法:先独立看书,思考问题,再小组交流老师提出的问题(先从4号、3号开始回答,组长负责组织,提问,副组长负责记录,以及和老师的交流。)

自学思考:

1、什么是公倍数?最小公倍数?并背诵。

2、如何求两个数的最小公倍数?

3、两个数的公倍数和他们的最小公倍数之间有什么关系?

4、两个数有没有最大的公倍数?为什么?

三、合作交流(15分钟)

1.最小公倍数的概念。

(1)学生先独立思考。

(2)再合作讨论自己是如何做的。

(3)全班交流。

2.小结:6,12,18,…是3和2公有的倍数,叫做它们的公倍数。其中,6是最小的公倍数,叫做它们的最小公倍数。

3.举例说明:求6和8的最小公倍数。

(1)学生独立完成,全班交流。

(2)学生的方法有:

①列举法:先找倍数,再找公倍数,最后找出最小公倍数。

例如:6的倍数:6,12,18,24,30,36,42,48,…

8的倍数:8,16,24,32,40,48,…

6和8公倍数:24,48,…

6和8的最小公倍数:24

②大数翻倍法:8,16,24,…

6和8的最小公倍数:24

③分解质因数法:

8=2×2×26=2×3

8和6的最小公倍数包括8和6的公有质因数和各自独有的质因数。

④画图法。

4.用喜欢的方法求12和15的最小公倍数。

学生汇报。

5.用分解质因数法求18和8的最小公倍数。

四、质疑探究(4分)

求下面每组数的最小公倍数,看看有什么发现?

4和513和748和1617和85

小结:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,大数是两数的最小公倍数。

五、小结检测(6分钟)

(一)小结:谈谈你本节课的收获?

(二)检测:

1.求下面每组数的最小公倍数。

[15,9][18,24][18,27][14,21]

[32,40][25,45][26,39][54,63]

2.下面的说法对吗?说一说你的理由。

(1)两个数的最小公倍数一定比这两个数都大。

(2)两个数的积一定是这两个数的公倍数。

六、堂清(6分钟)

找出下列每组数的最小公倍数。你发现了什么?

3和62和85和64和93和95和10

人教版五年级下册数学最小公倍数教学设计 23

教学内容 :

公倍数、最小公倍数的概念及求两个数的最小公倍数的方法。课本 P88~90 例 1、例 2。

最小公倍数教学设计 24

教学目标:

1、复习、整理本单元的基本概念,在练习中进一步理解公因数、最大公因数、最简分数等概念。

2、通过输理、比较,建立相关概念的关系。

3、在游戏、应用中体验数学的趣味性。

基本教学过程:

一、基本练习

1、复习找因数、公因数的方法:

练习第一题。

学生填写后,说说你是怎么想的。巩固找公因数的方法。

2、复习约分的方法:

练习第二题先约分,再连线。

二、运用知识模型:

1、复习分数的意义、约分等知识的综合运用。

第3题。

让学生自己用分数表示,并交流自己的思考方法。

2、第4题。

先让学生找出分数,并说说自己的思考方法?

3、第5题。

本题开放性强,学生可以自由分割,并用分数表示。

三、思考题:

本题先要帮助学生理解题意,并思考:选择怎样的地砖才能没有剩余?引导学生认识到问题的实质是要求24和30的公因数是1、2、3、6,因此可以选边长是1dm,2dm,3dm,6dm的方转。

四、实践活动:

先让学生用最简分数表示小明一天中每项活动的时间,巩固分数的意义、分数与除法、约分等知识。然后让学生自己设计一张表格,并用分数知识进行交流。

教学内容 : 25

课本 P88~90 例 1、例 2。