《因数和倍数复习与整理》教学反思(优秀11篇)
作为一名人民教师,教学是重要的工作之一,我们可以把教学过程中的感悟记录在教学反思中,那么教学反思应该怎么写才合适呢?
因数和倍数的教学反思 1
《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。(2)“约数”一词被“因数”所取代。这样的变化原因何在?我认真研读教材,通过学习了解到以下信息:签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的。概念。
虽然学生已接触过整除与有余数的除法,但我班学生对“整除”与“除尽”的内涵与外延并不清晰。因此在教学时,补充了两道判断题请学生辨析:
11÷2=5……1。问:11是2的倍数吗?为什么?因为5×0.8=4,所以5和0.8是4的因数,4是5和0.8的倍数,对吗?为什么?
特别是第2小题极具价值。价值不仅体现在它帮助学生通过辨析明确了在研究因数和倍数时,我们所说的数都是指整数(一般不包括0),及时弥补了未进行整除概念教学的知识缺陷,还通过此题对“因数”与乘法算式名称中的“因数”,倍数与倍进行了对比。
因数和倍数教学反思博客 2
本节课的内容涉及的概念非常多,即抽象又容易混淆,如何使学生更加容易理解这些概念,理清概念之间的相互联系,构建知识之间的网络体系是本节课教学的重难点。
1.构建知识网络体系,理清知识之间的相互联系。在教学中,我首先通过一个联想接龙的游戏调动学生学习的兴趣,让学生利用因数和倍数单元的知识来描述数字2,学生非常容易想到2是最小的质数、2是偶数、2的因数是1和2、2的倍数有2,4,6…、2的倍数特征是个位是0、2、4、6、8的数,通过学生的回答教师及时抓住其中的关键词引出本单元的所有概念:因数、倍数、质数、合数、奇数、偶数、公因数、最大公因数、公倍数、最小公倍数、2、3、5的倍数的特征。如何整理使这些凌乱的概念变得更加简洁、更加有序、更加能体现知识之间的联系呢?通过学生课前的整理发挥小组的合作交流作用,在相互交流中,学生相互学习、相互借鉴,逐渐对这些概念的联系有了更进一步的认识,然后通过选取几名同学的作品进行展评,最后教师和学生共同进行整理和调整,最终来完善知识之间的网络体系。
2.在练习中进一步对概念进行有针对性的复习。在练习环节中,我根据这些概念设计了一些相应的练习。目的是以练习促复习,在练习中更好的体会这些概念的具体含义,加深学生对概念的理解和掌握。
个别学生在展评中不会去评价,只是从设计的美观上去思考,而没有从体现知识之间的联系上去进行说明。
抓住数学知识的本质,美观的整理形式只是一些外在的,并不是重点。
因数和倍数教学反思 3
《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不一样。在以往的教材中,都是透过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=n表示b能被a整除,a能整除b。在此基础上再引出因数和倍数的概念。而此刻的人教版教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图引出一个乘法算式,透过这个乘法算式直接给出因数和倍数的概念。这样编排对于学生来说更容易理解和掌握。但是若老师对整除的概念不做讲解的话,今后的知识学习可能会造成一些缺陷,因此我在这课时中,结合老教材的知识给学生进行了渗透,学生学习起来掌握的很好。利用除法、乘法都能很快的找到一个数的因数与倍数。
因数和倍数是揭示两个整数之间的一种相互依存关系,在课前谈话中我利用生活与数学之间的联系,来帮忙学生理解因数倍数相互依存的关系。比如,我上课前利用班级中学生的父子关系和朋友关系来说明“朋友、父子”词语的含义,它是指两个人之间的一种关系,只能造句为“某人是某人的朋友”。这样的话局把生活中的相互依存关系迁移到数学中的倍数和因数,这样设计较自然贴切,让学生感受到数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,又帮忙学生理解了倍数和因数之间的相互依存关系。
教育家第斯多惠曾说过:“一个坏的教师奉送真理,一个好的教师则教人发现真理。”因此教学中,教师要重视学生的主体地位,给学生带给充分思考和自我表现的空间,引导他们利用已有的知识去探索发现新的知识。如何找一个数的因数是这节课的重点也是难点。根据学生的实际状况,我进行了重组教材,先让学生根据乘法(除法)算式“一对对”地找出18、15、24的因数。透过“质疑”:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照必须的顺序一对对的找因数,能既找全又不遗漏。在探究倍数时,我则大胆的放手,让学生自主探索找一个数倍数的方法,给学生带给了广阔的思维空间。这样透过多种形式的教学,既激发了学生的学习兴趣,又极大地提高了课堂教学的实效性。学生在自我找因数和倍数练习后又总结了最大的因数和最小的倍数都是它本身。我想这就应比教师的传授要好百倍。
一节课下来,学生学习起来十分简单,教学设计尽量避免出现概念混淆、理解困难的问题。学生对新知掌握较牢,学生乐学,思路清晰。以上是自我教学后的一点感悟。
因数和倍数教学反思 4
《因数和倍数》是一节数学概念课,在以往的教材中,都是通过除法算式来引出整除的概念,而现在的人教版教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。对于学生来说是比较难掌握的内容。
尤其对因数和倍数是一对相互依存的概念,不能单独存在,不是很好理解。我通过生活与数学之间的联系,帮助学生理解因数倍数相互依存的关系。所以在上课之前我特意举一些生活中的实例来帮助学生对相互依存的理解,在描述因数和倍数的。概念时就不会说错了。对于这节课的教学,我特别注意下面几个细节来帮助学生理解因数和倍数的概念。
1.是我上课时特别注意让学生明白什么情况下才能讨论因数和倍数的概念。
2.是要学生注意区分乘法算式中的"因数"和本单元中的"因数"的联系和区别。在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对"积"而言的,与"乘数"同义,可以是小数,而后者是相对于"倍数"而言的,两者都只能是整数。
3.是要注意区分"倍数"与前面学过的"倍"的联系和区别。"倍"的概念比"倍数"要广。可以说"15是3的倍数",也可以说"1.5是0.3的5倍",但我们只能说"15是3的倍数",却不能说"1.5是0.3的倍数".在课堂中反复强调,帮助学生认真理解辨析,所以学生一节课下来对这组概念就理解透彻了,就不会模糊了。
因数和倍数教学反思 5
《第八次》这节课是俞校长指导我的一堂导师课。课文是一篇寓含深刻道理的外国历史故事,课文记叙了古代苏格兰王子布鲁斯英勇抵抗侵略军,但屡战屡败,几乎丧失信心。后来看到蜘蛛结网,受到启发,振作精神,经过第八次战斗,终于赶跑了侵略军,取得了最后的胜利。
这篇课文重点在于让孩子从蜘蛛结网、布鲁斯八次抵抗中体会坚持到底就是胜利的道理,文章脉络清楚,我是这样设计我的教学思路的:
一、以故事切入,体验情感。
在第二课时中,我设计了这样的环节,请学生概括完故事的主要内容后,我说:“小朋友们真棒,为了奖励你们,顾老师给你们讲一个故事,不过一定要先看着这组词语,边听边记,行吗?”然后出示关于“蜘蛛结网”的几组过程性词语。我讲完故事了,问孩子:“你们能不能也看着这组词语来讲讲蜘蛛结网这个故事。”我故意请了一个平时很少举手的同学,然后对其他同学说:“你们仔细听,等他都说完了,我们再提意见让他改进。”那孩子果然有好几个环节说错了,在同学们几次纠正下,最后一次,他终于响亮并且完成地把这个故事讲好了。我和同学们一起给他送上掌声,问他:“听好同学们给你掌声,你觉得怎么样”“很开心”“恩,开心中觉得自己很棒是吗?没有人会随随 便便成功,不经历风雨怎么会有彩虹。”此时,我分明看到那孩子脸上漾起灿烂的笑容。
象这样的情感体验我还设计在让学生感情朗读“布鲁斯王子感动极了!他高兴地跳起来,喊到:‘我也要干第八次!”本堂课学生情绪高涨,举手的人特别多,我注意到平时经常低头做自己事情的小哲也举手了,我赶紧叫他,我的目的是要让学生体验:只有努力就能做到。其实第一次,他读得挺好了,我应该换一个同学,但是一紧张,心里就想着要完成这个教学环节,于是我对他说:“顾老师还没感受到你的感动,再读一次,行吗?”这时,小哲反而开始读不好了,我只能继续说:“顾老师还没听到你的信心,再读一次好吗?”他又读了一次,我又说:“我还想看到布鲁斯说这句话的时候是什么表情,做了什么动作?”最后一次,这孩子怎么都做不出布鲁斯的表情和动作来。
这个教学环节我觉得我缺乏教学机智,俞校长说我没有设计好,我应该把这样的情感体验放在学完第三小节以后,而我只是让他们看这个词组讲了一个故事,就叫让感悟布鲁斯的情感,学生还没深入文本,哪来的感悟呢?学生肯定都把注意放在讲故事上了。
所以第一个讲故事的环节,我觉得我花的力气太多,也是我最后还有教学任务没有完成的原因。
再以布鲁斯的情感作为主线,孩子就能时刻跟着布鲁斯或是“唉声叹气”,或是“感动极了”,最后大家一起为布鲁斯的成功而欢呼。为了更好的理解课文,我设计的自学重点是“布鲁斯王子第八次抵抗成功的原因是什么?� 课堂教学以情感为纽带,变得更富诱惑力,使学生的自学能力得到培养,促使学生在好学、乐学中逐渐获得知识,体会情感。 但真能落到实处,让学生真正钻进文本体验情感,并且达到一定度,做起来却不简单。
因数和倍数教学反思 6
本节课是在学生已经学习了一定的整数知识的基础上进行教学的。
课堂中,我首先让学生理解分类标准,明确因数和倍数的含义。在例1教学中,首先根据不同的除法算式让学生进行分类,同时思考其标准依据是什么。通过学生的独立思考和小组交流学生得出:第一种是分为两类:一类是商是整数,另一类是商是小数;第二种是分为三类:一类商是整数,一类是小数,另一类是循环小数。究竟怎样分类让学生在争论与交流中达成一致答案分为两类。然后根据第一类情况得出倍数和因数的含义,特别强调的是对于因数和倍数的`含义要符合两个条件:一是必须在整数除法中,二是必须商是整数而没有余数。具备了这两个条件才能说被除数是除数的倍数,除数是被除数的因数。
其次,厘清概念倍数和几倍,注重强调倍数和因数的相互依存性。在教学中可以直接告诉学生因数和倍数都不能单独存在,不能说2是因数,12是倍数,而必须说谁是谁的因数,谁是谁的倍数。对于倍数与几倍的区别:倍数必须是在整数除法中进行研究,而几倍既可以在整数范围内,也可以在小数范围内进行研究,它的研究范围较之倍数范围大一些。
本节课的不足之处:
1.练习设计容量少了一些,导致课堂有剩余时间。
2.对因数和倍数的含义还应该进行归纳总结上升到用字母来表示。
《因数和倍数》教学反思 7
一、数形结合减缓难度
《因数和倍数》这一内容,学生初次接触。在导入中我创设有效的数学学习情境,数形结合,变抽象为直观。让学生把12个小正方形摆成不同的长方形,并用不同的乘法算式来表示自己脑中所想,借助乘法算式引出因数和倍数的意义。这样,学生已有的数学知识引出了新知识,减缓难度,效果较好。
二、自主探究,合作学习
放手让每个同学找出36的所有因数,学生围绕教师提出的“怎样才能找全36的所有因数呢?”这个问题,去寻找36的所有因数。由于个人经验和思维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。既留足了自主探究的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。
三、在游戏中体验学习的快乐
在最后的环节中我设计了“找朋友”的游戏,层次是先找因数朋友,再找倍数朋友,最后为两个数找到共同的朋友。
这堂课我还存在许多不足,我的教学理念很清楚,课堂上学生是主体教师只是合作者。但在教学过程中许多地方还是不由自主的说得过多,给学生的自主探索空间太少。
因数和倍数教学反思博客 8
1、出示12个小正方形。
师:数一数,一共有几个小正方形?如果老师请你把这12个同样的小正方形拼成一个长方形,会拼吗?能不能用一条简单的乘法算式表达出来?
2、指名学生列式,提问其他学生:“你知道他是怎么摆的吗?”要求学生说出每排摆几个,摆了几排。
3、根据学生的回答,适时贴出各种不同摆法:
12×1=12
6×2=12
4×3=12
4、12个同样大小的正方形拼成长方形,能列出三道不同的乘法算式,千万别小看这些乘法算式,咱们今天研究的内容就在这里。以4×3=12为例,12是4的倍数,那12也是(3的倍数),4是12的因数,那3也是(12的因数)。同学们很有迁移的能力,这就是我们今天要研究的倍数和因数。(板书课题)
5、根据另外两道乘法算式,说说谁是谁的倍数,谁是谁的因数。
6、刚才在听的时候发现12×1=12说因数和倍数时有两句特别拗口,是哪两句?
说明:虽然是拗口了点,不过数学上还真是这么回事。12的确是12的因数,12也确实是12的倍数。为了方便,我们在研究倍数和因数时所说的数一般指不是0的自然数。
7、说一说
(1)根据72÷8=9,说一说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。
(2)从下面的数中任选两个数,说一说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。
3、5、18、20、36
陶老师从摆小正方形入手,提出“每排摆了几个?”“摆了几排?”这两个问题,引导学生用乘法算式把摆法表示出来,再让学生猜一猜“可能是怎么摆的”,学生充分经历了“由形到数、再由数到形”的过程,既为倍数和因数概念的提出积累了素材,又初步感知倍数和因数的关� 接着结合具体的乘法算式介绍倍数和因数,并让学生根据另外两道乘法算式说说谁是谁的倍数,谁是谁的因数。再通过除法算式让学生说说谁是谁的倍数,谁是谁的因数。最后让学生从五个数中任选两个数说说谁是谁的倍数,谁是谁的因数,这样层层深入,学生对倍数和因数的感受更加深刻。<
因数和倍数教学反思 9
反思教学效果总结了的原因有以下几点:
(一)素数和合数的判断不熟练。一些数如:49、51、91这些数看上去是素数,但其实是合数。这些数经常被学生误认为是素数而导致错误,原因是这些学生就简单的看看,而不愿意用2、3、5等素数去尝试,努力寻找是不是有第3个因数存在。
(二)意思相同,但语句表述不同时,有的学生就不能正确理解。如:在上面的数只有两个因数的数有哪些?其实这道题目就是问在上面的数中素数有哪些。
(三)有的学生缺少分析理解,研究和判断的能力,判断和选择题的错误比较多。例如:1的倍数肯定是奇数。如果一个学生先找到1的倍数,然后根据数的特点作出正确的判断。但有的学生看到1是个奇数,然后就简单地做出它的倍数也是奇数想法。例如:一个数的倍数一定比它的因数大。如果学生找一个数,看看它的最小倍数是哪个?找找它的最大因数是哪个?这样不难找到正确的答案。但是有的倍数简单地被题目的意思误导,加上平时的练习中还有倍数一般都是大的,因数一般都是小的概念,学生容易误判。
教学中,我和学生有时太满足于平时练习的结果,而缺少让学生进行数学思考和表达能力的过程训练。看来在以后的教学中,我要继续改变教学观念,要高度尊重学生,依靠学生,把以往教学中主要依靠教师转变为依靠学生。
建议
1、在新知教学中,注重引导学生进行探究。在本单元中找一个数的倍数和因数,都有比较好的方法。如何通过学生的探究找到方法,成了教学的亮点。如“找36的因数” ,找一个数的因数是本课的难点。应该说,找出36的几个因数并不难,难就难在找出36的。所有因数。教学中,建议教师不要把方法简单地告诉学生,而是让学生独立去探究,独立写出36的所有因数,在学生反馈的基础上教师再引导学生对有序和无序作比较,学生才能在比较、交流中感悟有序思考的必要性和科学性。交流的过程正是学生相互补充、相互接纳的过程,是对学习内容进行深加工和重组知识的过程,是学生的认知不断走向深入,思维水平不断提升的过程。这是新知探究阶段的思维交流。既是不断深化理解因数与倍数知识的过程,又是培养学生良好思维品质的过程。给学生独立思考的空间,提出了各自的解法或见解,是思维独创性的培养;引导学生一对一对有序的找,或从1开始,用除法一个个去试,是思维条理性的培养;既有迁移于摆方块的形象思维,又有直接运用除法算式的抽象思维,或乘除法口诀的综合运用等,在感受解法多样性中,培养了学生思维的灵活性。
2、寓教于乐,游戏中进行相应的巩固练习。本节课是一节概念课,内容比较枯燥,课本上的练习形式也比较单一,所以在认识倍数和因数后,应安排有趣味的游戏,比如数字转盘游戏,让学生看转盘说指针停止时,内圈的数与外圈的数的关系,进一步认识倍数和因数,又能从中发现倍数和因数的相互依存的关系。在学会找倍数和因数之后也可设计游戏,如:“猜猜一位老师的电话号码”,在一个八位数的号码中已知其中四位,根据有关倍因数关系的问题请学生找出未知的四位号码,以提高学生学习的积极性,稍有难度的练习给学有余力的学生一个证明自己能力的机会,让学生在数学活动中体验到数学学习的趣味性和挑战性,学生运用所学知识解决问题,体会到了学习新知识后的成就感。
3、教师要注重评价的导向作用,让学生在评价中成长。在第一课时学生交流12的因数时,教师展示了三位同学的作业:第一种是无序的,第二种是从小到大有序的,第三种是一对一对有序的。接着老师让第一种方法的学生说说自己的想法,并让其他同学评论,此时大多数学生的评价都认为不好,找得缺漏、无序,这时其实作为老师是否可以问问这种答案“有没有值得肯定的地方?”,毕竟找到的这些答案都是正确地,然后再去寻找更好的方法。如果老师能经常注意这样引导评价,学生自然而然地意识到要先看别人的优点,再看别人的缺点,也给了刚才那位学生一个心理上的安慰,使他能更积极地投入到学习当中去。
因数和倍数教学反思博客 10
教学内容:青岛版教材小学数学五年级上册88—91页。
1、使学生初步认识因数和倍数的含义,探索求一个数的因数或倍数的方法,发现一个数的因数、倍数中最大的数、最小的数及其个数方面的特征。
2、使学生在认识因数和倍数以及探索一个数的因数或倍数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平,对数学产生好奇心,培养学习兴趣。
教学重点:理解因数和倍数的意义,探索求一个数因数或倍数的方法。
教学难点:探索求一个数因数或倍数的方法。
教具准备:多媒体课件、学生练习题
师:同学们看这是什么?
生:小正方形。
师:想不想知道王老师给大家带来了多少个这样的小正方形?
生:想。
师:多少个?
生:12个。
师:想一想你能不能把这12个完全一样的小正方形拼成一个长方形呢?
生:能。
【设计意图】:以学生熟悉情景引入,激发学生的好奇心。
师:增加一点难度,用一道算式说明你的想法,让其他同学猜一猜你是怎么摆的,好吗?
生:好!
学生汇报:
生1:1×12=12
师:他是怎么摆的?
生:一行摆1个,摆了12行;也可以一行摆12个,摆1行。
课件出示摆法。
师:把第一种摆法竖起来就和第二种摆法一样了,我们把这两种摆法算作一种摆法。(用课件舍去一种)
生2:2×6=12
师:猜一猜他是在怎么摆的?
生:一行摆2个,摆了6行;也可以一行摆6个,摆2行。
师:这两种情况,我们也算一种。
生3: 3×4=12
师:他又是怎么摆的?
生:一行摆3个,摆了4行;也可以一行摆4个,摆3行。
师:还有其他摆法吗?
生:没有了。
师:对,如果把12个同样大小的正方形拼成一个长方形,就只有这三种摆法,大家千万不要小看了这三种摆法,更不要小看了这三种摆法下面的三道乘法算式,今天我们的新课就藏在这三道乘法算式里面。因数和倍数(板书课题)
2.教学“因数和倍数”的意义。
师:我们以3×4=12为例,在数学上可以说3是12的因数,4也是12的因数,12是3的倍数,12也是4 的倍数。这里还有两道算式,同桌两个同学先互相说一说谁是谁的因数,谁是谁的倍数。
学生汇报:任选一道回答。
生1:12是12的因数,1是12的因数,12是2的倍数,12是1的倍数。
师:说的多好啊!虽然有点像绕口令,但数学上确实是这样的。我们再一起说一遍。
师:还有一道算式,谁来说一说?
生:2是12的因数,6是12的因数,12是2的倍数,12也是6的倍数。
师明确:为了研究方便,我们所说的因数和倍数都是指自然数,(0除外)。
师:通过刚才的练习,你有没有发现12的因数一共有哪些? (生边说老师边有序的用课件出示12的所有的因数。)
师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。
3、5、18、20、36
【设计意图】让学生经历知识的形成过程。通过实际例子,让学生进一步理解,因数和倍数之间存在着相互依存的关系。
1、找一个数的因数。
师:看来同学们对于因数和倍数已经掌握的不错了。不过刚才老师在听的时候发现一个奥秘,好几个数都是36的因数,你发现了吗?谁能在五个数中把哪些数是36的因数一口气说完?
师:说出几个36的因数并不难,关键是怎样找的既有序又全面,有没有信心挑战一下?
生:有。
师:老师提个要求:
1)、可以独立完成,也可以同桌交流。
2)、把这个数的因数找全以后,把你的方法记录在下面。并总结你是怎样找的。
2、探索交流找一个数的因数的方法。
找一名有代表性的作业板书在黑板上。
师:他找对了吗?
生:没有,漏下了一对。
师:为什么会漏掉?仅仅是因为粗心吗?
生:不是,他没有按照一定的顺序找!
师:那么要找到36所有的因数关键是什么?
生:有序。
师生共同边说边有序的把36的所有的因数板书出来。 师:还有问题吗?
生:没有了。
生:你们没有,老师有一个问题,你们为什么找到6就不再接着往下找了?
生:再接着找就重复了。
师:那么找到什么时候就不找了?
生:找到重复了,就不在往下找了。
师、生共同总结找因数的方法。(一对一对有序的找,一直找到重复为止)。
师:有失误的学生对自己的错误进行调整。
3、巩固练习。
找出下面各数的因数。
4、寻找一个数的因数的特点。
【设计意图】放手让学生自主找一个数的因数,并总结找一个数因数的方法。学生非常喜欢,而且也能够让学生在活动中提升。
1、找一个数的倍数。
师:刚才我们学习了找一个数的因数,那么你能像刚才一样有序的找出一个数的所有倍数吗?
生:能!
师:试试看,找个小的可以吗?
生:行!
师:找一下3的倍数。30秒时间,把答案写在练习纸上。 ??
师:有什么问题吗?
生:老师,写不完。
师:为什么写不完?
生:有很多个!
师:那怎么才能全都表示出来呢?
生:可以加省略号。
师:你太厉害了!你把语文上的知识都用上了,太真聪明了!难道不该再来点掌声吗?
师:谁能总结一下你是怎样找到的?
生:从小到大依次乘自然数。
师:你真会思考!
课件出示3的倍数。
2、找5、7的倍数。
师:我们再来练习找一下5的倍数。
生:5的倍数有:5、10、15、20、25??
生:7的倍数有:7、14、21、28、35??
师:你能像总结一个数因数的特点一样,来总结一下一个数的倍数有什么特征吗?
生:能!
学生总结:一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
【设计意图】在探索求一个数的倍数和因数的方法时,创设具体的情境让学生去合作交流,并结合具体事例,让学生自己观察并发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征,丰富了教学方式,让学生在观察中发现,在合作中体验成功的喜悦,在主动参与、乐于探究中发展自我。
认识“完美数”。
师:(课件出示6的因数)在6的因数中还藏着另外一个秘密,(这是孩子们都瞪大眼睛在看,在听!)我们把6的因数中最大的一个去掉,剩下1、2、3,然后把它们再加起来又回到6本身,数学家给这样的数起了一个名字,叫“完美数”。依次出示第二个、第三个一直到第六个完美数。
小结:其实有关因数和倍数的秘密还有很多,它们在等待着同学们在以后的学习中去研究、去探索。
【设计意图】丰富学生的知识,陶冶学生的情操。
找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时如果再给予有效的指导和总结就更好了。
倍数和因数教学反思 11
新教材在引入倍数和因数概念时与以往的老教材有所不同,比如在认识“因数、倍数”时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去“整除”的数学化定义,降低学生的认知难度,虽然课本没出现“整除”一词,但本质上仍是以整除为基础。我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我从以下三个方面谈一点教学体会。
一、设疑迁移,点燃学习的火花
良好的开头是成功的一半。我采用“拼拼摆摆”作为谈话进入正题,不仅可以调动学生的学习兴趣,一一对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。
教学找一个数的倍数时,我依据学情,设计让学生独立探究寻找3的倍数。我设计了尝试练——引出冲突——讨论探究这么一个学习环节。学生带着“又对又好”的要求开始自主练习,学生找倍数的方法有:依次加3、依次乘1、2、3……、用乘法口诀等等。在学生充分讨论的基础上,我组织学生围绕“好”展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,可以很快地找到第几个倍数是多少,学生发现3的倍数写不完时都面面相觑,左顾右盼。学生通过讨论,认为用省略号表示比较恰当。用语文中的一个标点符号解决了数学问题,自己发现问题自己解决,学生从中体验到解决问题的愉快感和掌握新知的成就感。
二、操作实践,举例内化,认识倍数和因数
我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助多媒体出示乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,让学生自主体验数与形的结合,进而形成因数与倍数的意义。使学生初步建立了“因数与倍数”的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。
三、注重细节,注重学生的习惯培养
学生在找一个数的因数时最常犯的错误就是漏找,即找不全。学生怎样按一定顺序找全因数这也正是本课教学的难点。所以在学生交流汇报时,我结合学生所叙思维过程,相机引导并形成有条理的`板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。
这样的板书帮助学生有序的思考,形成明晰的解题思路的作用是毋庸质疑的。教师能像教材中那样一头一尾地成对板书因数,这样既不容易写漏,而且学生么随着流程的进行,势必会感受到越往下找,区间越小,需要考虑的数也就越少。当找到两个相邻的自然数时,他们自然就不会再找下去了。书写格式这一细节的教学,既避免了教师罗嗦的讲解,又有效突破了教学难点,我相信像这样润物无声的细节,无论于学生、于课堂都是有利无弊的
由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地接受。教学之前我知道这节课时间会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时间安排的可以少一些,所以我在总结倍数的特征,这一环节里缩短出示时间,直接以3个小问题出示,,实际效果我认为是比较理想的。课上还应该及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。应该及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。