六年级数学《正比例》教案【精选7篇】

发布时间:

作为一位杰出的教职工,常常要写一份优秀的教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那么教学设计应该怎么写才合适呢?

《正比例》教案 篇1

教学目标

1.经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2.在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3.进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重点

正确理解正比例的意义,并能准确判断成正比例的量。

教学难点

引导学生通过观察、思考发现两种相关联的量的变化规律,概括出正比例关系的概念。

教学资源

学生已学过一些常见的数量关系和计算公式,掌握比和比例的知识。

预习菜单。

预习作业设计

1.填空

①已知路程和时间,怎样求速度?()Ο()=速度

②已知总价和数量,怎样求单价?()Ο()=速度

③已知工作总量和工作时间,怎样求工作效率?()Ο()=速度

2.预习例1观察下表,思考下列问题:

一辆汽车行驶的时间和路程如下:

时间(时)

1

2

3

4

5

6

……

路程

(千米)

80

160

240

320

4000

480

……

①表中有哪两种量?

②这两种量的数值分别是怎样变化的?

③你发现这两种量变化有什么规律吗?如果看不出规律的话,可以先写出几组相对应的路程和时间的比,求出比值,想想有什么规律。

学程设计导航策略调整反思

一、揭示题课,认定目标(预设2分钟)我们学过一些常见的数量关系,这节课我们进一步来研究这些数量关系中的一些特征。通过学习我们要弄清什么样的两个量成正比例,怎样判断两种量是否成正比例。

二、交流合作,提炼建模(预设7分钟)

1.出示例1小组交流预习情况。

2.全班交流汇报,探究新知:

①理解“相关联的量”。

②用式子表示路程和时间的变化规律。

③学生看书、质疑。揭示路程和时间是成正比例的量。

3.根据板书完整地说一说表中路程和时间成什么关系。组织全班交流

1.引导学生认识:时间变化,路程也随着变化,这样的两种量,就叫做两种相关联的量。(板书:两种相关联的量)实际生活中,还有哪些相关联的量呢?跟你的同桌说一说。结合举例,抓住“随着”一词说明:一种量的变化,是因为由另一种量的变化引起的,这样的两种量才是相关联的量。

2.引导学生用式子表示路程和时间的变化规律,教师相机板书:路程/时间=速度(一定)

3.象这样的两种量,它们的关系叫什么?请同学们打开课本,自己获取有关概念。组织汇报:通过看书,你知道了些什么?还有什么疑问?(老师适时板书)

4.教师指导学生完整地说一说表中路程和时间的正比例关系。

三、抽象分析,掌握方法(预设10分钟)1.围绕学习菜单完成“试一试”。

①独立思考。

②小组交流。

2.全班交流汇报。完整地说说表中总价和数量成什么关系。

3.比较例1与试一试,思考并讨论,这两个题有什么共同点?

4.如果用字母χ和У分别表示两种相关联的量,用κ表示它们的比值,用式子怎样表示正比例关系?

5.成正比例的量具备哪两个条件?1.引导学生完整地说说表中总价和数量成什么关系。

2.教师相机板书正比例的关系式。

3.引导学生提炼出成正比例的两个条件。

四、分层练习,内化提升(预设11分钟)

1.完成第63页“练一练”。学生先独立思考并作出判断,再说出判断理由。

2.做练习十三第1—3题。第1、2题,学生先算一算,想一想,再交流汇报。第3题学生先画出放大后的图形,计算它们的`周长和面积,再思考题中的两个问题。

3.学生举例并说明理由。

先小组交流,然后全班交流。

4.判断并说理。“小张跳高的高度和他的身高”成正比例。

1.引导学生有条理地说明判断的思考过程。

2.通过讨论使学生进一步明白:只有当相关联的量中每一组对应数的比值一定时,这两种量才成正比例。

3.生活中哪些量之间存在比例关系?我们学过的数量关系中,哪些是正比例关系?下面进行一个举例和说理比赛,各小组至少举一个正比例关系的例子,并说明理由。组织学生“举例及说理”交流。

4.老师也举了一个正比例的例子,请大家和我作一辩论。

小张跳高的高度和他的身高。让学生应用正比例的意义,尝试着判断数量之间的关系,是对正比例意义学习的强化,还培养了学生的应用意识。

1.学生独立作业,教师巡视,个别辅导差生。

2.学生完成作业后,反馈矫正。

3.引导学生自我评价课堂学习表现。

教学反思

我是这样预设的,以例1为导路线,通过说、想、听等环节刺激学生的感觉器官,“试一试”完全尊重学生的自主权,根据学习菜单让学生独立完成,讲练结合,尽量做到老师少讲、精讲,时间控制在(15分钟)左右,学生主栽着整个课堂。苏霍姆林斯基曾说过:“在人的内心深处,都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中这种需要特别强烈。”上完这节课,我更加深刻的体会到这一点:学习活动的主体是学生,开放型的数学教师不仅关注学生的智慧生命,还关注学生的情感价值生命。我深信本节课的后半部分,通过学生自己探索、研究、发现、人人练习的过程,体验到成功的喜悦。

六年级数学《正比例》教学设计 篇2

教学内容:

九年义务教育六年制小学数学第十二册P62——63

教学目

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重点:认识正比例的意义

教学难点:掌握成正比例量的变化规律及其特征

设计理念:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。

一、复习铺垫激情促思

1、说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。

学生口答,相互补充

二、初步感知探究规律1、出示例1的表格(略)

说说表中列出了哪两种量。

(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)

(2)引导学生观察表中数据,寻找两种量的变化规律。

根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。

根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?

根据学生的回答,板书关系式:路程/时间=速度(一定)

(3)揭示概括成正比例的量:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量,

(板书:路程和时间成正比例)

2、教学“试一试”

学生填表后观察表中数据,依次讨论表下的4个问题。

根据学生的讨论发言,作适当的板书

3、抽象表达正比例的意义

引导学生观察上面的两个例子,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

根据学生的回答,板书:=k(一定)

揭示板书课题。

先观察思考,再同桌说说

大组讨论、交流

学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。

学生根据板书完整地说一说表中路程和时间成什么关系

学生独立填表

完整说说铅笔的总价和数量成什么关系

学生概括

三、巩固应用深化规律

1、练一练

生产零件的数量和时间成正比例吗?为什么?

2、练习十三第1题

先算一算、想一想,再组织讨论和交流。

要求学生完整地说出判断的思考过程。

3、练习十三第2题

先独立判断,再有条理地说明判断的理由。

4、练习十三第3题

先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。

分别求出每个图形的周长和面积,并填写表格。

讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。

5、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”� 教材首先说明应用正、反比例的知识可以解决一些实际问题。例1教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。通过方框中的说明突出了怎样进行思考的过程,特别强调了新科技要判断题目中两种相关联的量成什么比例关系,以及列出比例式所需的相等关系,即“行驶的路程和时间成正比例关系,所以两次行的路程和时间的比是相等的”然后再设未知数,列出等式(方程)解答,并在解答的基础上引导学生“想一想”,如果改变例1题目里的条件和问题该怎样解答。

教学对象分析:

成正比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。

教学目标:

1、掌握用正比例的方法解答相关应用题;

2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,

从而加深对正比例意义的理解;

3、培养学生分析问题、解决问题的能力;

4发展学生综合运用知识解决简单实际问题的能力。

教学重点:掌握用正比例的方法解答应用题

教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。

教学过程:

一、 谈话导入:

1、在上新课之前,先考考大家对广州的认识。你知道广州最高的建筑物是什么?它位于何处?

2、对于这座广州最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?

刚才同学们想出了很多的方法去测量中信广场的大概高度。今天我们学习一种新的方法——正比例应用题,学完后,我们试着用这种方法去计算中信广场的大概高度。看谁学得最棒。

二、 新课教学:

先来研究这样一个问题。

1、 出示例1

一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

2、 分析解答应用题

(1) 请一位同学读一读题目

(2) 这道题要求什么?已知什么条件?

(3) 能不能用以前学过的方法解答?

(4) 让学生自己解答,边订正边板书:

140÷2×5

=70×5

=350(千米)

答:________________。

3、 激励引新

这两种方法都合理,还可以有什么方法解答呢?

学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?

三、 探讨新知

1、 提出问题

师:请同学们结合课本上的例题,讨论以下问题。

(1) 题目中相关联的两种量是________和________。

(2) ________一定,_________和_________成_______比例关系。

(3) ______行驶的_____ 和 _____的' ________相等。

2、 学生自学例题后小组讨论。

3、 组间交流:小组代表把讨论结果在班内交流

4、 学生尝试解答后评价(指名学生板演)

5、 怎样检验?把检验过程写出来。

6、 概括总结

(1) 用比例解答应用题与用算术方法解答应用题教师这道题的解法,如果题目中没有要求的,我们采取任何一种方法都可以,但如果题目要求用比例解的,就一定要用比例的方法解,小学数学教案《数学教案-正比例应用题》。

(2) 明确解题步骤。(板)

用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。

1. 分析判断

2. 找出列比例式所需的相等关系

3. 设未知数列等式

4. 求解

5. 检验写答语

四、 练习提高

1、 基本练习

(1)例题改编

① 如果把这道题的第三个和问题改成:“已知公路长350千米,需要行驶多少小时?”该怎样解答?

② 让学生解答改编后的应用题,集体订正。

③ 小结 :比较一下改编后的题和例1有什么联系和区别?

例1的条件和问题以后,题中成正比例的关系仍没变,解答的方法出没有改变,只是要设需要行驶的小时数为x,列出的等式是: 140/2=350/x

(2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?

2、变式练习

3、实践运用

(1)汇报数据:刚才我们上课时提到怎教材分析:

正比例应用题这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例1教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。通过方框中的说明突出了怎样进行思考的过程,特别强调了新科技要判断题目中两种相关联的量成什么比例关系,以及列出比例式所需的相等关系,即“行驶的路程和时间成正比例关系,所以两次行的路程和时间的比是相等的”然后再设未知数,列出等式(方程)解答,并在解答的基础上引导学生“想一想”,如果改变例1题目里的条件和问题该怎样解答。

教学对象分析:

成正比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。

教学目标:

1、掌握用正比例的方法解答相关应用题;

2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,

从而加深对正比例意义的理解;

3、培养学生分析问题、解决问题的能力;

4发展学生综合运用知识解决简单实际问题的能力。

教学重点:掌握用正比例的方法解答应用题

教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。

教学过程:

一、 谈话导入:

1、在上新课之前,先考考大家对广州的认识。你知道广州最高的建筑物是什么?它位于何处?

2、对于这座广州最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?

刚才同学们想出了很多的方法去测量中信广场的大概高度。今天我们学习一种新的方法——正比例应用题,学完后,我们试着用这种方法去计算中信广场的大概高度。看谁学得最棒。

二、 新课教学:

先来研究这样一个问题。

1、 出示例1

一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

2、 分析解答应用题

(1) 请一位同学读一读题目

(2) 这道题要求什么?已知什么条件?

(3) 能不能用以前学过的方法解答?

(4) 让学生自己解答,边订正边板书:

140÷2×5

=70×5

=350(千米)

答:________________。

3、 激励引新

这两种方法都合理,还可以有什么方法解答呢?

学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?

三、 探讨新知

1、 提出问题

师:请同学们结合课本上的例题,讨论以下问题。

(1) 题目中相关联的两种量是________和________。

(2) ________一定,_________和_________成_______比例关系。

(3) ______行驶的_____ 和 _____的 ________相等。

2、 学生自学例题后小组讨论。

3、 组间交流:小组代表把讨论结果在班内交流

4、 学生尝试解答后评价(指名学生板演)

5、 怎样检验?把检验过程写出来。

6、 概括总结

(1) 用比例解答应用题与用算术方法解答应用题教师这道题的解法,如果题目中没有要求的,我们采取任何一种方法都可以,但如果题目要求用比例解的,就一定要用比例的方法解。

(2) 明确解题步骤。(板)

用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。

1. 分析判断

2. 找出列比例式所需的相等关系

3. 设未知数列等式

4. 求解

5. 检验写答语

四、 练习提高

1、 基本练习

(1)例题改编

① 如果把这道题的第三个和问题改成:“已知公路长350千米,需要行驶多少小时?”该怎样解答?

② 让学生解答改编后的应用题,集体订正。

③ 小结 :比较一下改编后的题和例1有什么联系和区别?

例1的条件和问题以后,题中成正比例的关系仍没变,解答的方法出没有改变,只是要设需要行驶的小时数为x,列出的等式是: 140/2=350/x

(2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?

2、变式练习

3、实践运用

(1)汇报数据:刚才我们上课时提到怎样测量和计算中信广场的大概高度,课前我请几位同学去测得中信广场的一些数据。现在请这些同学跟我们汇报一下。

(2)能用这些数据编一道正比例应用题吗?

(3)小组合作编题

五、 总结

今天我们学习的是如何用正比例的方法解答以前学过的应用题。解答的步骤怎样的呢?

样测量和计算中信广场的大概高度,课前我请几位同学去测得中信广场的一些数据。现在请这些同学跟我们汇报一下。

(2)能用这些数据编一道正比例应用题吗?

(3)小组合作编题。

六年级数学《正比例》教案 篇3

教学目标:

1、使学生了解表示成正比例的量的图象特征,并能根据图象解决相关简单问题。

2、通过练习,巩固对正比例意义的认识。

3、情感、态度与价值观:初步渗透函数思想。

重点难点:

能根据数量关系式或图象判断两种量是否成正比例。

教学准备:

投影仪。

教学过程:

一、新课讲授

教学第46页内容。

教师出示表格(见书),依据表中的数据描点。(见书)

师:从图中你发现了什么?

生:这些点都在同一条直线上。

看图回答问题

①如果铅笔的数量是7支,那么铅笔的总价是多少?②总价是4、0的铅笔,数量是多少?③铅笔的数量是3支,那么铅笔的总价是多少?描出这一对应的点,它们是否在同一直线上?

你还能提出什么问题?有什么体会?

组织学生分小组汇报,学生汇报时可能会说出

①正比例关系的图象是一条经过原点的直线。

②利用正比例图象不用计算,可以由一个量的值,直接找到对应的另一个量的值。

二、练习讲授

1、基本练习。

(1)投影出示教材第49页第1题。

教师引导学生回顾正比例的意义及判断是否成正比例的方法。学生独立完成练习。

教师要求学生从两个方面说明为什么成正比例。

a、电是随着用电量的增加而增加;

b、电费与用电量的比值总是相等的。

师生共同订正。

(2)投影出示:一列火车1小时行驶90km,2小时行驶180km,3小时行驶270km,4小时行驶360km,5小时行驶450km,6小时行驶540km,7小时行驶630km,8小时行驶720km……

①出示下表,填表。

一列火车行驶的时间和路程

②填表并思考发现了什么?

③教师点拨:随着时间的变化,路程也在变化,我们就说时间和路程是两种相关联的量。(板书:两种相关联的量)

④教师:根据计算你们发现了什么?指出:相对应的两个数的比值固定不变,在数学上叫做一定。

⑤用式子表示它们的关系:路程÷时间=速度(一定)。

教师:上节课,我们学习了成正比例的量,下面我们继续学习和练习。

2、指导练习。

(1)完成教材第49页第2题。

(2)完成教材第49页第3题,先由学生独立做,后由老师抽查。在抽查第(1)小题时,多让不同的学生回答。做第(2)小题时应多让学生们交流。第(3)小题汇报时要求说出,你是怎样估计的,上台在投影仪上展示估计的思维过程。

(3)解决教材49页第4题:

①投影出示书中的表格,引导学生观察表中的数据。

②组织学生在小组中合作探究。

a、动手画一画,指名汇报图象特点。

b、组织学生说一说,相互交流。

提示:判断两种量是否成正比例,先要判断它们是不是相关联的量,再判断它们的比值是否一定。

三、课堂作业

1、根据x和y成正比例关系,填写表中的空格。

2、看图回答问题。

(1)在这一过程中,哪个量没变?

(2)路程和时间有什么关系?

(3)不计算,从图中看出4小时行驶多少千米?

(4)7小时行驶多少千米?

课堂小结:

教师:判断两个相关联的量成正比例的三个要素是什么?

通过这节课的学习,你有什么收获?

课后作业:

完成练习册中本课时的练习。

板书设计:

正比例图像

图像:一条过原点的直线。

六年级数学《正比例》教案 篇4

教学要求:

1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据正比例的意义判断两种相关联的量成不成正比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

教学重点:

认识正比例关系的意义。

教学难点:

掌握成正比例量的变化规律及其特征。

教学过程:

一、复习铺垫

1.说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2.引入新课。

上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)

二、自主探究:

1.教学例1。

出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让学生观察表里两种量变化的数据,思考:

(1)表里有哪两种数量,这两种数量是怎样变化?

(2)长方形的面积随着那种量的变化而变化的?你能看出它们变化的特点吗?

(3)分别找出面积与款项对应的数,面积与宽的比各是几比几?比值各是多少?

引导学生进行讨论,得出:

(1)表里的两种量是长方形的宽与面积(长与面积)。宽与面积(长与面积)是两种相关联的量,(板书:两种相关联的量)面积随着宽(长)的变化而变化。

(2)宽(长)扩大,面积也扩大;宽(长)缩小,面积也缩小。

(3)可以看出它们的变化规律是:面积与宽(面积与长)比的比值总是一定的。(板书:面积和宽比的比值一定)因为面积和宽(面积与长)对应数值比的比值都是5(2)。提问:这里比值5(2)是什么数量?谁能说出它的数量关系式?板书:面积/宽=长(一定)面积/长=宽(一定)想一想,这个式子表示的是什么意思?(把上面板书补充成:长一定时,面积和宽比的比值一定宽一定时,面积和长比的比值一定)

2.教学例2。

出示例2。要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。学生观察思考后,指名回答。然后再提问:这两种相关联量的变化规律是什么?你是怎样发现的?你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成单价一定时,总价和数量比的比值一定)

3.概括正比例的意义。

(1)综合例1、例2的共同点。

提问:请大家比较例l和例2,你发现这两个例题有什么共同的地方?(①都有两种相关联的量;②都是一种量随着另一种量变化;③两种量里对应数值的比的比值一定)

(2)概括正比例关系的意义。

像例l、例2里这样的两种相关联的量是怎样的关系呢,请同学们看课本第95页最后连个自然段。说明:根据刚才学习例1、例2时发现的规律,这里有两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。追问;两种相关联量成不成正比例的'关键是什么?(比值是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的比值,那么上面这种数量关系式可以怎样写呢?指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的比值k是一定的。这时就说x和y成正比例关系。所以,两个量成正比例关系,我们就用式子=k(一定)来表示。

4.教学例3学生看书自学,小组讨论,集体交流。

(1)数量与时间是不是两种相关联的量?

(2)数量与时间有什么关系?他们的比值是谁?比值是不是不变的?

(3)判断数量与时间是不是成正比例?

5.完成97页练一练。

三、巩固练习

1.(1)提问:例l里有哪两种相关联的量?这两种量成正比例关系吗,为什么?例2里的两种量是不是成正比例的量?为什么?提问:看两种相关联的量是不是成正比例,关键要看什么?

2.做练习十一第1题。

让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的正比例的意义,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。

3.下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?

一种苹果,买5千克要10元。照这样计算,买15千克要30元。

四、课堂小结

这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示y和x这两种相关联的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?关键是列出关系式,看是不是比值一定。

五、家庭作业

练习十一第2~6题。

《正比例》教学设计 篇5

教学内容:

苏教版义务教育课程标准实验教科书第94页《正比例和反比例》“练习与实践”的第1-6题。

教材学情分析:

《正比例和反比例》复习教材上分为两个部分,“整理与反思”部分主要复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求学生说说比的基本性质与分数的基本性质、商不变的规律有什么联系和区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变的规律的一致性,有利于学生加深对比与分数、除法关系的理解,促进学生对数学知识的灵活运用。接下来,教材重点引导学生交流判断两种量是否成比例、成什么比例的思考方法,并要求学生找出一些生活中成正比例或反比例量的例子,帮助学生进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律的又一种有效的数学模型。

“练习与实践”第1题让学生写出本班的男、女生人数,再要求学生分别写出男生和女生人数,在要求学生分别写出男生和女生人数的比以及女生和全班人数的比,帮助学生在练习中进一步理解比的意义,掌握用比表示数量之间关系的基本方法;“练习与实践”第2题让学生先分小组量一量人体有关部分的`长度,再按要求写出部分长度的比,再求出比值。然后启发学生通过进一步的交流和比较,发现一些有趣的现象。这样的活动,既有较强的趣味性,又能较好体现比的应用价值,有利于吸引学生积极主动参与活动,并在活动中获得一些新的认识;“练习与实践”第3题结合直观的图片,先让学生按要求写出一些比,再估计写出的这些比中哪两个比可以组成比例,并通过计算加以验算。这里的估计即可以依据每一个比中前项和后项之间的关系,也可以依据相应长方形图片的形状,因而这个活动既能帮助学生复习比例的意义,又有利于学生进一步体会图形的放大和缩小与比例的内在联系;“练习与实践”第4题是解比例的练习。练习的目的主要是让学生进一步理解比例的基本性质,并掌握解比例的基本方法;“练习与实践”第5题提供了对我国东、西部地区各类土地资源面积进行比较的百分数,要求学生把其中一些用百分数表示的数量关系改写成用比表示,并交流从这组数据中所获得的其他信息。通过练习,可以使学生进一步体会比和百分数在表示数量关系方面的各自特点,加深对比与百分数关系的理解;“练习与实践”第6题先让学生看图写出一个房间中两种地砖面积的比,再让学生联系这个房间算出这两种地砖的面积,帮助学生进一步理解比的意义,掌握解决按比例分配的实际问题的基本方法。

教学目标:

⑴使学生进一步理解比的意义和基本性质,理解比与分数、除法的关系,能根据要求求比值、化简比;理解比例的意义和基本性质,会解比例;认识成正比例和反比例的量,感受表示数量关系及其变化规律的不同数学模型;能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

⑵通过量一量等操作活动,吸引学生积极主动参与,感受比的应用价值,在活动中获得一些新的认识;

⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。

教学重点:进一步理解比和比例的一些知识。

教学难点:感受比的应用价值,在活动中获得一些新的认识。

教学具准备:

教学流程:

一、自主学习,完成练习。

⑴揭示课题。

教师谈话:今天我们复习《正比例和反比例》。板书课题——“正比例和反比例”。

⑵自主练习。

教师谈话:用5-8分钟的时间阅读课本94页的内容,完成“练习与实践”1-6题,其中“练习与实践”第2题作为课前活动,“练习与实践”第1题本班的男女生人数板书在黑板上,男生24人、女生27人。

学生自主练习,教师巡视。

二、交流讨论,梳理知识。

⑴整理比的知识。

交流“练习与实践”第1题的答案,并矫正;理解“男生和女生人数的比是8:9”的意思,一般表示男生是女生人数的8/9,男生和女生人数是除法关系;“男生和女生人数的比是8:9”由比24:27化简而来,回忆比的基本性质;体会“女生和全班人数的比是9:17”答案由来的多种途径。

⑵感受生活中的比例。

交流头长和身高的比,让多名学生将自己头长和身高的比和比值板书在黑板上;指导学生取近似值,整理答案,再说说自己的发现,比值一般很接近的,感受生活中的比例。

⑶整理比例的知识。

交流“练习与实践”第3题的答案,并矫正;根据写成的比例理解比例的意义,根据图形的放大或缩小沟通比的基本性质和分数基本性质的一致性;根据图形的放大或缩小体会和比例的关系。

⑷整理解比例的知识。

交流“练习与实践”第4题的答案,并矫正;理解比例的基本性质,以及在解比例中运用,掌握解比例的方法。

⑸解决实际问题。

交流“练习与实践”第5题,先说说对表中百分数的理解,交流我国东西部各自的特点;掌握把两个数量的百分数关系改写成比的一般方法,用对应的分数表示前项和后项,再化简。交流“练习与实践”第6题,说说得到两种地砖铺地面积比的思考过程,因为每块地砖的大小是相同的,所以可以转化成块数来写出面积的比;交流问题2的解决过程,体会比的应用。

⑹谈谈本节课的收获。

《正比例》教学设计 篇6

教学资料:

人教版23页至24页例1以及相应的“做一做”。

教学目标:

1、掌握用正比例的方法解答相关应用题。

2、透过解答应用题使学生熟练地决定两种相关联的量是否成正比例,从而加深对正比例好处的理解

3、培养学生分析问题、解决问题的潜力。

教学重点:

掌握用正比例的方法解答应用题

教学难点:

能正确决定两种相关联的量成什么比例,正确列出比例式。

教学过程:

一、激趣导入

1、在上新课之前,先考考大家对保亭县的认识。你明白保亭县最高的建筑物是什么?它位于何处?

2、对于保亭县最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?

刚才同学们想出了很多的方法去测量电视塔的`大概高度。这天我们学习一种新的方法——正比例应用题,学完后,我们试着用这种方法去计算电视塔的大概高度。看谁学得最棒。

二、自学互动

先来研究这样一个问题。

1、出示例1

一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

2、分析解答应用题

(1)请一位同学读一读题目

(2)这道题要求什么?已知什么条件?

(3)能不能用以前学过的方法解答?

(4)小组合作学习交流,边汇报边板书

140÷2×5

=70×5

=350(千米)

答:________________。

3、适时点拨

这两种方法都合理,还能够有什么方法解答呢?

学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?

三、探讨新知

1、提出问题

师:请同学们结合课本上的例题,讨论以下问题。

(1)题目中相关联的两种量是________和________。

(2)________必定,_________和_________成_______比例联系。

(3)______行驶的_____和_____的________相等。

2、学生自学例题后小组讨论。

3、组间交流:小组代表把讨论结果在班内交流

4、学生尝试解答后评价(指名学生板演)

5、怎样检验?把检验过程写出来。

6、概括总结

(1)用比例解答应用题与用算术方法解答应用题的解法不同,但计算结果相同,如果题目中没有要求的,我们采取任何一种方法都能够,但如果题目要求用比例解的,就必定要用比例的方法解。

(2)明确解题步骤。(板)

用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。

1.分析决定

2.找出列比例式所需的相等联系

3.设未知数列等式

4.求解

5.检验写答语

四、测评训练

1、基本练习

(1)例题改编

①如果把这道题的第三个和问题改成:“已知公路长400千米,需要行驶多少小时?”该怎样解答?

②让学生解答改编后的应用题,群众订正。

③小结:比较一下改编后的题和例1有什么联系和区别?

改编例1的条件和问题以后,题中成正比例的关系仍没变,解答的方法没有改变,只是要设需要行驶的小时数为x,列出的等式是:

140/2=400/x

(2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?

五、总结全课

同学们,你们这天学到了什么?有什么收获呢