分数的基本性质说课稿(优秀8篇)
作为一名专为他人授业解惑的人民教师,总不可避免地需要编写说课稿,借助说课稿可以更好地组织教学活动。那么写说课稿需要注意哪些问题呢?下面是整理的分数的基本性质说课稿(优秀8篇),如果对您有一些参考与帮助,请分享给最好的朋友。
五年级数学《分数基本性质》说课稿 篇1
我今天说课的内容人教课标版教材五年级下册第四单元的内容《分数的基本性质》。
本节内容属于“数与代数”知识领域。在学生学习了分数的意义、分数大小的比较的基础上进行教学的。又与整数除法及商不变的性质有着内在的联系,更分数的约分、通分的依据。为学生今后学习分数加减法计算、比的基本性质打下基础。因此,本节课的内容尤为重要,起到承前启后的作用,尤为重要。
本节教材围绕着分数基本性质的得出与应用,安排了两道例题。通过例1,概括出分数基本性质。通过例2,运用、巩固分数的基本性质。练习联系现实生活,让学生了解可以依据分数基本性质解决的实际问题。如练习十四的第2题、第5题、第9题和第10题。有利于通过应用,促进学生掌握分数的基本性质,也有利于培养学生的数学应用意识。在本节教材中,还穿插安排了一个“生活中的数学”栏目,介绍了分数在日常生活中的一些应用。涉及洗手液的使用方法、足球比赛的进程、照相机的曝光速度。这些例子,有助于引起学生的兴趣,关注分数在现实生活中的种种应用。
以上我对教材的分析,下面我对学情和教法进行分析。五年级的学生认知结构中已经具有了抽象概念,因而具有逻辑推理能力,新旧知识迁移的能力,这些能力为本节课的学习做好了充分的准备。依据学生的认知规律,我在本节课的教学方法中力求做到为学生创设探究学习的情景;联系生活实际,让学生体会数学与生活的联系;改变学生的学习方式,运用合作学习,培养学生的协作能力;运用多媒体教学手段增加教学的新颖性,引导学生以多种感官参与学习的全过程。我主要采用:创设情境引入新课、师生互动探讨新知、引导学生总结等教学方法。
根据以上分析。我认为本节课的教学目标有以下几点:
1、经历探索分数的基本性质的过程,理解分数的基本性质。
2、在教学过程中,发展学生合理的推理能力,并清晰的阐述自己的观点。
3、培养学生在合作中逐步形成评价与反思的意识。
4、在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。
我认为本节课的教学重点:理解、掌握分数的基本性质。
难点:发现和归纳分数的基本性质,以及应用它解决相应的问题。
下面说说我的教学过程:
我将本课的教学设计以下几个环节,
一、设疑激趣,引入新课
教育学家布朗曾提出:“情境通过活动来合成知识,兴趣最好的老师”。
首先我通过多媒体为学生带来一个和尚分饼的故事。从前有座山,山里有座庙,庙里有个老和尚和三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?
这样通过故事激发学生的学习兴趣,为后面的学习做好了铺垫。
二、自主探索,学习新知
新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。
1、小组合作,让学生用一张纸代替饼,试着分分看。经历验证猜想——学生操作验证——集体汇报交流——展示成果四个过程。
2、引导提问:既然三个和尚分得的饼同样多,那么表示他们分得饼的三个分数什么关系呢?这三个分数什么变了,什么没变?
学生得出:这三个分数相等关系,分数的分子和分母变化了,但分数的大小不变。(随着学生的回答,老师将板书的三个分数用“=”连接,给出等式。)
3、引导学生从左到右观察等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?(教师请同学们小组讨论,学生各抒己见,争论不休,气氛活跃。)
师:谁能用一句话把这个变化规律叙述出来呢?
生:从左往右看,分数的分子、分母同时扩大了,也就分子分母都乘了一个相同的数,但三个分数的大小没有变。
师:你们观察的真仔细!请大家给点掌声好吗?(出示课件)老师这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。
4、让学生从右到左观察等式分子和分母又如何变化的呢?谁能用一句话把这个变化规律叙述出来?小组讨论后,同样的方法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或者除以”四个字,小结分数的基本性质。
5、接着让学生四人小组一起做游戏,运用分数的基本性质,由一位同学说一个分数,然后其他同学依次说出相等的分数,不能重复,看看谁又快又准。
结束游戏,教师提问,现在我们知道分数的分子、分母都乘上或除以同一个数,分数大小不变。刚刚大家做游戏,有没有人使用了0呢?大家想一想0可以不可以呢?让学生回答:分数的分母不能为零。我在课件中填上“零除外”三个红色的字,以便引起学生的注意。
6、教师引导:“学了分数的基本性质到底有什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。”接着让学生练习课本例题2,两名学生上台演板,其他学生点评。学生自己小结方法。
教育家波利亚指出:学习任何新知的最佳途径由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。教学中给学生提供自主探究、合作交流的天地,积极为学生创设主动学习的机会,提供尝试探索的空间,学生能主动从不同方面,不同角度思考问题,寻求解决途径。同时还培养学生的合作意识,使不同的想法得到交流,实现知识的学习、互补。
三、分层练习,巩固深化
只有通过相应的练习,才能更好地巩固新知,形成技能。在练习的安排上我注重层次性,渗透多样性,让学生理解用所学的知识可以解决不同类型的问题,进一步提高解题能力。
1、涂一涂练习14,第1、7题。
因为要给空格上色,所以答案并不唯一,通过这两题不仅能让学生回忆探究发现规律的过程,充分体现了“玩中学,学中玩”的新课程理念。
2、说一说完成练习14,第8题
我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。
3、想一想:第5、9、10题(选择一题做为作业)
在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。
四、畅谈收获,小结全课
让学生自己总结所学内容,畅谈收获和感受,培养学生的概括能力和语言表达能力。
整节课中,我力求做到始终引导学生主动观察、充分体验、动手实践、积极创新,努力做到既注重学生的独立思考,又注重合作交流,既重视知识与能力的共进,又关注情感和体验的提高,让学生全面、深刻地理解分数的基本性质。
分数的基本性质说课稿 篇2
一、教材分析
分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。
探索分数的基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。根据我对教材的认识,本课时安排了学习活动和游戏活动让学生寻找相等的分数,使学生初步体验分数的大小相等关系,为观察、发现分数的基本性质提供丰富的学习材料。然后引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳分数的基本性质。
教学目标:
1、知识目标:经历探索分数的基本性质的过程,理解分数的基本性质。能用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2、能力目标:培养学生的观察、比较、归纳、总结概括能力。
3、情感目标:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
二、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,根据概念教学的特点,结合教学特点,以及学生的认知规律,我将采用的教学方法主要有:
1、 直观演示法
先让学生充分感知,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过度到抽象思维。
2、 实际操作法
指导学生亲自动一动、折一折,画一画,比一比,多这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
3、 启发式教学法
运用知识迁移规律组织教学,层层深入促使学生在积极的思维
4、 树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用分层练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的
三、教学组织形式:
师生互动、合作与探索结合
四、教学过程与设计意图
1、故事引入、激发兴趣、揭示课题
以阿凡提讲故事引入,然后小组讨论。
2、动手操作,探索新知
①做一做,折一折。拿出三张同样大的长方形纸,请分别平均折成2份、4份、8份。并按照下图涂色。如果把每张纸都看作“1”,请你把涂色的部分用分数表示出来。学生动手操作、汇报。
根据上面的过程,学生能得到一组相等的分数吗?
②教师引导学生归纳小结:比较这三个分数的分子和分母,它们各是按照什么规律变化的?分数的分子和分母同时乘上或除以相同的数(0除外),分数的大小不变,这就是分数的基本性质。
知识引伸,联系旧知识:根据分数与除法的关系,以及整数除法中商不变的性质,你能说说它与分数的基本性质吗?
设计意图:新知识力求让学生主动探索,逐步获取。借助直观图组织学生进行一个动手操作活动,借助直观图形找出相等的分数,使学生能够直观感知。充分调动孩子们去动手、动脑,培养学生的操作能力和语言表达能力。并充分发扬学生的团结协作的精神, 互相帮助,每个人都能在激励中得到不同的发展。
本次活动的安排为学生提供了丰富的学习材料,引导学生联系以往的学习经验,进行学习内容的迁移,自然得到分数大小的变化规律,教师在此也进行了适当的重点点拨。在这一环节的学习过程中,教师注重学生的观察、比较、归纳概括能力的培养。
3、实践游戏、深化理解、巩固练习:
设计意图:练习设计由易到难,由浅入深,既巩固新知,又发展思维,其间还自然地渗透思想品德教育。师生对出数做题,能够创设民主和谐的学习气氛。学生对于课堂游戏都非常积极,这时,教师应该及时表扬表现出色的学生,也要顾及一些后进生的学习状况,带动后进生的学习激情。
4、全课总结:这节课你有什么收获?
《分数的基本性质》说课稿 篇3
一、说教学理念
1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。
二、说教材
1、教学内容
《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。
2、学情分析
学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。
3、教学目标:
(1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。
(2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。
(3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
教学重点:理解和掌握分数的基本性质;教学难点:学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。教具学具:课件,三张同样大小的长方形纸条、彩笔。
三、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:
1、实际操作法
指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
2、直观演示法
先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
3、启发式教学法
运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。
四、说学法
1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。
五、说教学过程
(一)、新知铺垫
(二)、新知导入
(三)、新知探究
(四)、新知探究
(五)、新知训练
(六)、新知应用
(七)、新知强化
(八)、新知小结
1、新知铺垫和导入
上课伊始我利用分饼的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的分子和分母都不相等,这其中有什么规律呢?继而揭示课题。
(设计意图)好奇是学生的天性,通过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。
2、新知探究
(1)、动手操作、形象感知
首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/2,2/4,4/8。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。
(设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。
(2)、观察比较,探究规律
首先,在学生折纸的基础上,通过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的意义,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行对比,找出二者间的联系,使学生更好的理解、运用性质。
(设计意图)这一环节重在培养了学生大胆交流、语言表达的能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。
3、新知训练
在巩固阶段,我安排了三个不同层次的习题。其中“新知训练”是对“分数的基本性质”做进一步的诠释。“新知应用”是导入分饼时的题,难度不大,首尾照应,最后还安排了“新知强化”环节,属于开放性题。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣,培养了学生创新意识和解决问题的能力。
分数的基本性质说课稿 篇4
今天我说课的内容是《分数的基本性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学程序、说板书设计”六个方面来说课。
一、本课的教学理念有:
1、以学生发展为本,着力强化主体意识。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变“学数学”为“做数学”。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化等数学思想方法。
二、说教材
《分数的基本性质》一课是义务教材六年制数学第十册第四单元的一个内容。这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。
根据教材内容和学生的认识知规律,将本课的教学目标拟定如下:
1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。
2、情感、态度:激发学生积极主动的情感状态,养成注意倾听的习惯。
本课的教学重点和难点:理解和掌握分数的基本性质,会运用分数的基本性质。
三、说教法
树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用组织练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的。
四、说学法
1、学生在运用分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在折纸上画出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,让尝试中发现,在实践中体验。从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用自自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。
五、说教学程序
依据新的教学理念及学生的认知特点,将本课的教学模式制定为:
总之,学习无止境,在今后的教学中,我会更加努力地钻研教材、设计教法,力争使每一节数学课都能达到理想的教学效果。
《分数的基本性质》反思
本节我想结合我校申报的市级课题《创设数学问题情境激发学生学习兴趣》和本人负责的市级课题《网络环境下促进自主学习的教学设计的研究》来谈谈这节课的教学设想,以及结合本节课的教学情况谈几点反思。
探索性问题的设计研究我认为有两个方面,一是教师对问题的精心设计,一是培养学生提问题的能力,教师以合作者、引导者的身份与学生一起探索,经历知识的获取过程,从而达到探究的目的,针对这点认识,这节课在我们学校课题组成员的集体备课下,作了这样的设计。这节课主要是,让学生能够从中感受到学习的乐趣,精心设计问题,让学生主动探求知识,发展思维。
1、情境的创设:“爱因斯坦说:“兴趣是最好的老师。”新课标提倡要关于创设情境,小学生天生具有好奇好胜的心理特征,而这些特征往往是学生对数学产生兴趣的导火线。通过和尚分饼,创设问题作为引子贯穿全课。利用课件中生动的动画,创设一种和谐愉悦的气氛,激发学生的学习兴趣,这点在这节课中我个人觉得达到这个目的。
2、探究活动与数学逻辑思维过去我们常为学生设计相同的学习方式并要求学生按照教师设计的流程展开学习。比如这节课的验证猜想中一本来我是设计了让学生按折、画、剪、比的步骤一步一步来引导学生操作,这样的设计看上去会很热闹,其实学生的操作依然是被教师牵着鼻子走。后来,为了给学生创设个性化的学习空间,我重新设计:“课桌上的信封里放着一些材料,你可以根据自己的需要选择合适的材料来验证自己的猜想,如果你觉得不需要材料,当然也是可以的。”这样的设计能够给予学生一定的探究空间,也增添也活动的趣味性和挑战性。但是在实际教学过程中,由于本人教学能力不够熟练,学生紧张,表现出来的并不像我所想像的那般,但至少可以算已是对传统的一种大胆的突破吧。
在教学分数的基本性质的感知、理解、提升、归纳、概括方面,我注重对学生数学思维的表达、辨析、质疑的训练,尽量不给学生的数学思维加上框框,让学生展开思维,大胆思考,学生也提出了不少有价值的问题,如:这相同的数能不能包括小数,如果分数的分子和分母同时乘上或除以一个小数,那所得的数还是不是分数呢?为什么要零除外?大小不变能不能说成结果不变呢?等等一系列有价值的问题,并重视引导学生采用举例说明的方法来解决问题。我想这可能也是我这节课比较有收获的一个环节了。能真正地体现自主开放,转变学生的学习方式。
3、小组合作交流我们班由于在开展课题研究之前,很少可以说几乎没有合作的习惯。而这学期的小组合作的训练方面也做得不够,只能说是交流多于合作,所以在教学过程中出现了一些我预测不到的情况。在本节课的设计中有两处合作交流:一个是在验证猜想时合作,由于对小组的要求比较复杂,所以我运用了多媒体优势将小组合作要求打在屏幕上,这样学生就有了合作的方向,并且能对合作的效果加以对照,提高合作的有效性。另一个是在发现规律时合作探究,交流沟通。这时由于本班学生的实际,学生基本上处于一种交流的状态,不能说是合作了。有待今后对这个问题进一步努力。
4、有效地处理课堂生成资源当教师个人的设计意图与学生的实际的实际不相符合,而学生表现出来的行为或语言又是有价值的,这时教师该怎么处理,我认为这就是对课堂生成资源的把握问题了。另一个课堂生成点在其中有一个学生运用了商不变的性质来解释了1/4=2/8=4/16的原因,我却忘了将本节课的一个培养学生迁移类推能力的知识点遗漏了,那就是商不变的性质与分数的基本性质有什么联系与区别?这是一个很具有探究交流价值的问题。可惜我在预设与生成的把握方面做得比较欠缺,暴露出的问题也正是今后必须要努力去学习的地方。
5、练习的设计为了有效地防止学生在课堂教学后期产生注意力分散,较好的调动学生的学习积极性。在练习设计方面,尽量给枯燥的练习赋予丰富多彩的形式,一方面可以集中学生的注意力,另一方面也可以放松学生的心情,让他们在轻松愉快的氛围里学习知识,本案例中设计了:①有探究结束后的分辨是非,②有新课中的尝试性练习,③有游戏活动。较好地把独立思考与合作交流结合起来,学生学得轻松、愉悦。但在学习新知的过程中如何与练习有效地融合在一起,这也是一个很值得我个人反思的地方
反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
《分数的基本性质》教学设计
一、教学目标
1、经历探索分数的基本性质的过程,理解分数的基本性质。
2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
二、教材分析
分数的基本性质是约分和通分的基础,而约分、通分又是分数四则计算重要基础,因此,理解分数大小不变规律显得尤为重要。而分数与除法的关系以及除法中商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。探索分数大小不变的规律,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。
教学重点:理解掌握分数的基本性质。
教学难点:归纳性质
教学关键:利用分数意义理解性质
教学方法:直观教学法,故事情境激励法
三、教学设想
(一)、创设故事情境,激发学生学习兴趣,并揭示课题。
上课伊始我利用阿凡提为三兄弟分地的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的。而这几个分数的分子和分母都不相等,可分数却相等,这其中有什么规律呢,从而来揭示课题。
(二)、利用学具,小组合作探究规律。
当激发起学生的好奇心时,让学生四人小组合作利用手中的学具,结合分数的意义来探究其中的规律。在找到规律后让学生想一想,根据分数与除法的关系,以及整数除法中商不变的规律让学生再说说分数的基本性质,来加深学生对分数的基本性质的理解。在学生已经理解了分数的基本性质后,教师又让学生回到故事中去,让学生试想如果还有一只小猴子,它想要四块,猴王该怎样分呢?既达到了练习的目的,又首尾照应,调动学生的积极性。
(三)、设计有层次的练习,以达到巩固新知的目的。
四、教学设计
(一)创设情境,引起学生参与兴趣
1、猴王变戏法(学生模仿复习):
除法式子变形
分数与除法变形
2、教师出示三只可爱的小猴图片,奖励听故事:
有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成两块,分给第一只小猴一块,第二只小猴见到说:“太小了,我要两块。”猴王就把第二块饼平均切成四块,分给第二只小猴两块。第三只小猴更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切6块,分给第三只小猴三块。
同学们,你知道哪只猴子分得的多吗?(哪只猴子分得的多?让学生发表自己的意见)
3、教师出示三块大小一样的饼,通过师生分饼,观察验收后得出结论:三只猴子分得的饼一样多。聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道有什么规律吗?
(二)探究新知
1、动手操作、形象感知
请同学们拿出三张相同形状同样大的纸,把每张纸都看作一个整体。动手折出平均分的份数2份、4份、6份,动笔把其中的1份、2份、3份画上阴影,再把阴影部分剪下来,将剪下的阴影部分重叠,比一比记录下结论。
2、观察比较、探究规律
(1)通过动手操作,谁能说一说图中阴影部分用分数表示各是几分之几?
(2)你认为它们谁大?请到展示台上一边演示一边讲一讲。
(3)既然这三个分数相等,那么我们可以用什么符号把它们连接起来?
(4)这三个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?请同学们四人为一组,讨论这两个问题。
要求:有序观察认真交流
(5)学生汇报讨论情况。
(6)启发点拨。
A.通过从左到右的观察、比较、分析,你发现了什么?
B.分数的分子、分母都乘以或除以相同的数,分数的大小不变。这里“相同的数”是不是任何的数都可以呢?请举例说明。板书:(零除外)
C.你认为这句话中哪些词语比较重要?(都、相同的数、零除外)
(7)把和化成分母是12而大小不变的分数。
A.思考:要把和化成分母是12而大小不变的分数,分子怎么变?变化的依据是什么?
B.让学生讨论后独立解答。
(8)讨论:猴王运用什么规律来分饼的?如果小猴子要4块,猴王怎么分才公平呢?
(9)质疑。让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师质答疑。
(三)随堂练习
1.P109.1.
2.判断对错,并说明理由。
3、
(四)小结
同学们在这节课的学习中表现得很出色,说一说你有什么收获或体会?
五、让学生拿出课前发的分数纸,要求学生看清手中的分数与1/2相等的,报出自己分数后离场,与2/3相等的再离场与3/4相等的。20xx年10月17日
五年级数学《分数基本性质》说课稿 篇5
教材分析:
《分数基本性质》是北师大版小学数学第九册内容。是在三年级下册已经体验了分数产生的过程,认识了整体“1”,初步理解了分数的意义,能认、读、写简单的分数,会简单的同分母分数加减法的基础上,学习真假分数,分数基本性质,约分通分、比大小等知识,为后续学习分数与小数互化、分数乘除法四则混合运算打好基础。
学情分析:
学生已经知道了真假分数,掌握了分数与除数的关系及商不变性质,再来学习分数基本性质。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小却不变。学生在这种“变”与“不变”中发现规律,掌握新知识。
教学目标:
1、知识目标:经历探索分数基本性质的过程,理解并掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。
2、能力目标:培养学生观察、比较、抽象、概括等初步的逻辑思维能力,并且能够正确认识和理解变与不变的辨证关系。
3、情感目标:经历观察、操作和讨论等数学学习活动使学生进一步体验数学学习的乐趣。通过学生的成功体验,培养学生热爱数学的情感。
教学重点:
能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数理解分数基本性质的含义,掌握分数基本性质的推导过程。
教学方法:
根据本节课的教学内容和教学目标采用讲授法,小组合作学习。
教具准备:
准备大小相等的圆形纸片,水彩笔等。
教学过程:
一、故事设疑,揭示课题。
我将以唐僧师徒分饼的故事创设问题情景。八戒吃第一块饼的1/4,沙和尚吃第二块饼的2/8,悟空吃第三块饼的4/16,他们谁吃的多呢?以此引入新课,激发学生思考的兴趣,积极参与到课堂教学中来。并在这个环节设计学生动手折、画、标等活动,折出1/4,2/8,4/16,用彩笔在折的圆上涂出1/4,2/8,4/16,再用铅笔标出分数。在动手做的过程中初步理解分数基本性质。
二、合作探索,寻找规律。
请同学们观察1/4,2/8,4/16;3/4,6/8,12/16这两组分数,分子分母有什么变化,分数又有什么变化?组织讨论交流汇报。如果没有概括出“把0除外”就设计一组练习:分子分母同乘0,完善结论;如果概括出来了,就顺势进行验证。推导出分数基本性质-----分数的分子分母都乘或除以相同的数(0除外),分数的大小不变。
三、巩固练习。
练习题的设计有简单到复杂,例:分数的分子乘5,要使分数的大小不变,分母();2/3=??()/186/21=2/()等这样的题,进行练习。
四、梳理知识,沟通联系。
小结分数基本性质,请同学们回忆“商不变性质”。------在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。
然后比较这两个性质的联系。这样设计主要是为了共建知识之间的联系,有助于学生灵活迁移应用,触类旁通。
五、多层练习,巩固深化。
(1)把5/6和1/4化为分母为12而大小不变的分数。
(2)把2/3和3/4化为分子为6而大小不变的分数。
考考你:1/4的分子加上3,要使分数的大小不变,分母应加上()。
六、全课小结
现在让我们看板书,回忆这节课学到了什么知识,比上眼睛想一想,觉得把内容记下了,就微笑一下,是不是觉得学习是件快乐的是呢?
五年级数学《分数基本性质》说课稿 篇6
各位老师,同学:
大家上午好!
我说课的内容是:人教版小学数学课标教材五年级下册75页—76页《分数基本性质》。下面我就从教材分析、学情分析、教学目标、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。
一、教材分析
本节内容属于概念教学。《分数基本性质》在小学数学的学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。
二、学情分析
学生已经清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。
三、教学目标
综合分析课程标准要求及学生实际,我确定本节的教学目标如下:
1、理解和掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。
2、初步养成观察、比较、抽象概括的逻辑思维能力,并且在自主探究中正确认识和理解变与不变的辩证关系。
3、受到数学思想的熏陶,养成乐于探究的学习态度。
教学重点:理解掌握分数的基本性质,它是约分、通分的依据。
教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。
四、教法学法
根据本节课的教学目标,考虑到学生已有的知识、生活经验和认知特点,结合教材内容,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。通过观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。
五、教学过程
本节课的教学过程我分五个部分进行
第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问题情境,揭示本节课要研究的问题。
第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。
第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。
第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。
第五部分:梳理知识,反思小结。主要是总结全课。
其中,第三部分“合作探究,发现规律”可以细化为三个环节:
环节一:动手操作,进行比较
这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较能力。
环节二:呈现问题,引导观察
这一环节主要呈现给学生这样一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察能力。
环节三:交流汇报,得出规律
这一环节主要是学生汇报交流,得出结论。
如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质----分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括能力。
应该强调的是,无论学生说的多么好,教师最后的总结和确认是必不可缺的。
以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。
《分数的基本性质》说课稿 篇7
一、说教材分析
《分数的基本性质》是义务教育课程标准实验教材人教版五年级下册第五单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系、整数除法中商不变的规律这些知识为基础的。分数的基本性质是建立在分数大小相等这一概念基础之上的。而两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。分数的基本性质又是约分和通分的基础,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。
二、说教学目标
根据教材分析制定如下的教学目标:
知识与技能:
1、使让学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2、培养学生观察、分析和抽象概括能力。
过程与方法:
1、让学生经历分数基本性质的探究过程。
2、通过引导启发,帮助学生学会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数的方法。
情感态度与价值观:
1、体验合作探究的乐趣,培养学生的团结协作精神。
2、渗透“事物间相互联系”的辩证唯物主义观点。
教学重点:理解分数基本性质。
教学难点:归纳分数的基本性质,并运用性质转化分数。
教具教学准备:
多媒体课件,小棒、纸条、圆形纸片
三、说教学策略
为了营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着“将课堂还给学生,让课堂焕发生命活力”的指导思想,根据学生的认知规律,我采取以下教学策略:
1、采用了创设情境、引导探究、引导自学、组织讨论、组织练习等教学策略。
2、实际操作:指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促进学生的感性认识逐步理性化。
3、引导概括:先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
4、新课标指出:有效的数学学习活动,不能单纯模仿与记忆。动手实践、自主探索与合作交流是本节课学生学习的重要方式。
四、说教学流程
结合五年级学生的理解能力和年龄特征,我将本课的教学设计为六个环节。
(一)、创设情境,引发猜想
首先我为学生带来一个《猴王分饼》的故事。
猴山上的小猴子最喜欢吃猴王做的饼了,有一天,猴王做了三块大小一样的饼分给小猴子吃。它先把第一块饼平均切成4块,分给猴1一块;猴2见了说:“太少了,我要2块。”猴王又把第二块饼平均切成8块,分给猴2两块;猴3更贪,它抢着说:“我要3块,我要3块……”猴王又把第三块饼平均切成12块,分给猴3两。小朋友,你知道哪只猴子分得的饼多吗?
“同学们,你们认为猴王分得公平吗?”引发学生的猜想。
(这样就激发了学生的学习兴趣,为后面的学习做好了铺垫。)
(二)自主探索,寻找规律
(下面这个环节是课堂教学的中心环节,新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。)
1、小组合作 验证猜想
这只是大家的猜想,究竟哪只猴子分得的饼多呢?亲自分一分,验证你们的猜想。
学生操作验证---集体汇报交流----展示成果
2、既然三只小猴分得的饼同样多,那么表示他们分得饼的三个分数是什么关系呢?这三个分数什么变了,什么没变?
学生得出:这三个分数是相等关系,分数的分子和分母变化了,但分数的大小不变。
3、猴王把三张大小一样的饼分给小猴一部分后,剩下的部分大小相等吗?通过观察演示得出3/4=6/8=9/12
4、我们班有64名同学,分成了四组,每组16人。那么,第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出1/2=2/4=32/64
(三)比较归纳 揭示规律
1、出示思考题
1/4=2/8=3/12
比较每组分数的分子和分母:
从左往右看,是按照什么规律变化的?
从右往左看,又是按照什么规律变化的?
通过观察,你发现了什么?
让学生带着上面的思考题,先独立思考,后小组讨论、交流。
2、集体交流,归纳性质。
3、师生共同总结规律,找出性质中的关键词,然后齐读,注意关键的字词要重读。
4、现在,大家知道猴王是运用什么性质分饼了吗?
5、沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。
(这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间是相互联系”的辨证唯物主义观点)
(四)自学例2
1、自学例2。
2/3 = 2×()/3×4 =()/12
10/24 = 10 ( )/24 ( ) = ( )/12
2、展示交流:重点让学生说说分母、分子是如何变化的?根据什么?
这样设计的目的是学生学会的老师不包办,从而培养了学生的自学能力。
(五)多层练习 巩固深化
1、填上合适的数,说说你填写的根据
1/3 =()/6 10/15 =()/3 1/4 = 5/()
我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。
2、说一说下面各式运用分数的基本性质是否正确
5/24=5×2/24÷2=10/12 ( )
4/9=4÷2/9÷3=2/3 ( )
13/18=13+2/18+2=15/20 ( )
在这我设计了同学们在平时做题中容易混淆的问题,提醒同学们今后要注意。
3、想一想:(选择你喜欢的一道题来做)
与1/2相等的分数有多少个?想像一下把手中的正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?
9/24和20/32哪一个数大一些,你能讲出判断的依据吗?
在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。
(六)本课小结
同学们,通过这节课,你有哪些收获?
学生在交流收获的过程中,培养学生的知识概括能力。
五、说教学评价
1、教学过程中采用自我、小组、集体等多种评价方式,激发起学生交流的兴趣。
2、多媒体课件的应用,创设生动的教学情境。
3、学生在发现、体验、合作、交流、归纳、总结中,自主参与整个学习过程,营造独立、自主的学习空间,学生成为课堂的主人。
五年级数学《分数基本性质》说课稿 篇8
根据本单元的教学要求和本课的特点,我设计本课的教学目标有三点:
1、(认知目标)理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2、(认知目标)理解和掌握分数的基本性质。
3、(能力、情感目标)培养学生观察、分析、推理的能力。
教学重点:
理解和掌握分数的基本性质。
教学难点:
让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
《数学课程标准》提出:把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。如何充分发挥、凸显现代信息技术的优越性和有效性而又省时省力呢?
本课依托网络平台,为学生创设一种大问题背景下的探索活动,以游戏这个学生感兴趣的明线下,借助网络实验室,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会数学的科学性。创设“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生大胆猜想——验证猜想——完善猜想等,从而一步步使分数的基本性质趋于完善。
我设计的具体教学过程如下:
第一环节:激趣引入,凸显信息技术的趣味性。
“好的开始是成功的一半”,本课运用学生感兴趣的电脑游戏和卡通人物导入新课,有效地开启学生思维的闸门,激起猜测探究的兴趣,通过比较三个分数的大小,凸显矛盾冲突。(我在教学比较这三个分数大小时,学生们各抒己见,坚持着自己的观点不放,使得不同观点的矛盾激化,激发了学生的好奇心和争强好胜的心理,为后面的发现规律埋下伏笔。)
第二环节:探索规律,凸显信息技术的直观性和时效性。
1、提出猜想。
学生进入国外网站,通过操作,直观的观察情境中三个分数的涂色部分,发现这三个分数的大小是相等的。
再引导学生观察这组分数中“什么变了,什么没变”,从变了的分母、分子入手去观察它们是怎么变的,得到初步的猜想,“分数的分子、分母都乘或除以2,分数的大小不变”。
(“学起于思,思起于疑”。这个环节中,当学生猜测三个分数谁大谁小,运用网络实验室用比平时更少的时间、更直观的得出三个分数大小相等,为后面猜想的提出提供了更多观察、交流的时间)
2、完善猜想。
在得到初步猜想后,在游戏的大背景下,再出示一组分数:三分之二和十五分之十。学生猜测大小、进入网络实验室验证,发现这两个分数也是相等的。
这一部分的主要目的则在于完善初步猜想,使学生感受到分子、分母不仅可以乘或除以2,分数大小不变,还可以乘或除以像5这样更大的数,从而得到进一步的猜想:“分数的分子、分母都乘或除以同一个数,分数的大小不变”。
(在这一环节中,网络实验室再次起到了快速、直观知道分数大小的作用,唯一不同的是,这次使用了纸条这个不同的表现形式,通过不同的表现形式来表达分数的意义)
3、验证猜想,得出规律。
学生把符合猜想的三组分数记录在学习卡上,(用图片方式呈现)再到网络实验室里进行验证,看看是否也都具有一定的规律。通过大量的例子显示这不仅仅是学生的猜想,而是具有一定规律的。
最后运用分数与除法的关系和商不变的性质,从旧知迁移解释、理解新知,得到“同一个数”不能为0,从而确定了最后规律,得到本课课题:分数的基本性质。(平时的教学中能验证的分数少之又少,而学生通过猜想可以得到的分子、分母较大的相同大小的分数——如二分之一和百分之五十这样的分数就很难验证,通过我们的网络实验室就能很好地解决这个问题,充分体现了网络实验室的重要性和必要性。这样,在平常教学中最花费时间的环节——验证上节省了不少时间)
第三环节:游戏巩固,思维提升,凸显信息技术的交互性。
学生已经理解了分数的基本性质后,再次进入网络实验室,以玩游戏的形式巩固所学的规律。(教师也从这个过程了解学生的掌握情况。有的学生在玩这个游戏的时候甚至发现了两个分数之间的分子、分母分别不具备倍数关系,如十二分之六和十八分之九,还发现通过找中间数也能运用分数的基本性质解释这个现象。)
接着再通过回到第一组分数,利用分数的基本性质写出与第一组分数相等的分数来提升学生的思维,初步感知与第一组分数相等的分数还有很多很多。让学生感受到分数的基本性质应用非常广泛,还需要他们进一步的学习和探索。
第四环节:提炼方法,积累基本的数学活动经验。
师生共同回顾学习过程,总结并提炼出探索规律的方法:猜想→验证→得出结论,为学生今后的学习提供科学的学习方法。
第五环节:网上交流,课内向课外延伸。
一节课的结束不仅仅是解决了几个问题,更重要的引发学生新的思考和新的探究行为,但一节课的时间是非常有限的。所以在课的最后,教师在课件上给学生提供了课堂上所用网络实验室的网址和老师的博客,让学生通过网络实验室这个平台及博客这个载体,在网络上回馈所学、发表言论。记得我公布博客地址不久就得到了学生的反馈,甚至听课老师也参与其中,给我提出许多的意见和建议。这样能让学生感受了网络资源丰富的同时,也使这节课不仅仅局限在课堂上,还拓宽到了网络以及今后的生活、学习中,真真正正的利用、发扬网络资源,把一些常规课堂无法实现的交流,都一一实现,体现了信息技术的人性化、学生主体性以及网络的延迟性和广泛性。
最后我以一句话结束我今天的说课“儿童是知识的创造者而不是被动接受者,他们主动地建构属于他们自己的知识和对事物的理解。当孩子们在经历数学、体验数学时,课堂才是充满活力的!”谢谢大家!