初中数学知识点总结(推荐30篇)

发布时间:

初中数学知识点总结(通用30篇)

初中数学知识点总结 篇1

一、基本知识

一、数与代数

A、数与式:

1、有理数:①整数→正整数,0,负整数;

②分数→正分数,负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:带上符号进行正常运算。

加法:

①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数或指数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数

无理数

无理数:无限不循环小数叫无理数,例如:π=3.1415926…

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根;0的平方根为0;负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样;

③每一个实数都可以在数轴上的一个点来表示。

3、代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项;②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式

整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。

③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:

A^M+A^N=A^(M+N)

(A^M)^N=A^(MN

(A/B)^N=A^N/B^N

除法一样。

整式的乘法:

①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式:A^2-B^2=(A+B)(A-B);

完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。

整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算:

乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。

B、方程与不等式

1、方程与方程组

一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

解二元一次方程组的方法:代入消元法;加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程:ax^2+bx+c=0;

1)一元二次方程的二次函数的关系

大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y=0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图像与X轴的交点。也就是该方程的解了

2)一元二次方程的解法

大家知道,二次函数有顶点式(-b/2a

,4ac-b^2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解

(1)配方法

利用配方,使方程变为完全平方公式,在用直接开平方法去求出解

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解

(3)公式法

这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a

3)解一元二次方程的步骤:

(1)配方法的步骤:

先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

(2)分解因式法的步骤:

把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式

(3)公式法

就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c

4)韦达定理

利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a

也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用

5)一元二次方程根的情况

利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao

ta”,而△=b2-4ac,这里可以分为3种情况:

I当△>0时,一元二次方程有2个不相等的实数根;

II当△=0时,一元二次方程有2个相同的实数根;

III当△B,则A+C>B+C;

在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;

例如:如果A>B,则A-C>B-C;

在不等式中,如果乘以同一个正数,不等式符号不改向;

例如:如果A>B,则A*C>B*C(C>0);

在不等式中,如果乘以同一个负数,不等号改向;

例如:如果A>B,则A*C<B*C(C<0);

如果不等式乘以0,那么不等号改为等号;

所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘的数就不等于0,否则不等式不成立;

3、函数

变量:因变量Y,自变量X。

在用图像表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。

②当B=0时,称Y是X的正比例函数。

一次函数的图像:

①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图像。

②正比例函数Y=KX的图像是经过原点的一条直线。

③在一次函数中,当K〈0,B〈O时,则经234象限;

当K〈0,B〉0时,则经124象限;

当K〉0,B〈0时,则经134象限;

当K〉0,B〉0时,则经123象限。

④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

二空间与图形

A、图形的认识

1、点,线,面

点,线,面:①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N条边的棱柱,上下底面就是N边形。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成若干个扇形。

2、角

线:①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。射线只有一个端点。

③将线段的两端无限延长就形成了直线。直线没有端点。

④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。两点之间直线最短。

②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

②一度的1/60是一分,一分的1/60是一秒。即:60分为1度,60秒为1分。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。

②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角,180。始边继续旋转,当他又和始边重合时,所成的角叫做周角,360。

③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。

②经过直线外一点,有且只有一条直线与这条直线平行。

③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。

②互相垂直的两条直线的交点叫做垂足。

③平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

垂直平分线定理:

性质定理:在垂直平分线上的点到该线段两端点的距离相等;

判定定理:到线段2端点距离相等的点在这线段的垂直平分线上;

角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的:角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角的角平分线就是到角两边距离相等的点的集合。

性质定理:角平分线上的点到该角两边的距离相等;

判定定理:到角的两边距离相等的点在该角的角平分线上;

正方形:一组邻边相等的矩形是正方形

性质:正方形具有平行四边形、菱形、矩形的一切性质

判定:1、对角线相等的菱形2、邻边相等的矩形

二、基本定理

1、过两点有且只有一条直线

2、两点之间线段最短

3、同角或等角的补角相等

——补角=180-角度。

4、同角或等角的余角相等——余角=90-角度。

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短

7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行

8、如果两条直线都和第三条直线平行,这两条直线也互相平行

9、同位角相等,两直线平行

10、内错角相等,两直线平行

11、同旁内角互补,两直线平行

12、两直线平行,同位角相等

13、两直线平行,内错角相等

14、两直线平行,同旁内角互补

15、定理

三角形两边的和大于第三边

16、推论

三角形两边的差小于第三边

17、三角形内角和定理:

三角形三个内角的和等于180°

18、推论1

直角三角形的两个锐角互余

19、推论2

三角形的一个外角等于和它不相邻的两个内角的和

20、推论3

三角形的一个外角大于任何一个和它不相邻的内角

21、全等三角形的对应边、对应角相等

22、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

23、角边角公理(

ASA):有两角和它们的夹边对应相等的

两个三角形全等

24、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

25、边边边公理(SSS):有三边对应相等的两个三角形全等

26、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

27、定理1

在角的平分线上的点到这个角的两边的距离相等

28、定理2

到一个角的两边的距离相同的点,在这个角的平分线上

29、角的平分线是到角的两边距离相等的所有点的集合

30、推论1

等腰三角形顶角的平分线平分底边并且垂直于底边

31、推论2等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,即三线合一;

32、推论3

等边三角形的各角都相等,并且每一个角都等于60°

33、等腰三角形的判定定理

如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

34、等腰三角形的性质定理

等腰三角形的两个底角相等

(即等边对等角)

35、推论1

三个角都相等的三角形是等边三角形

36、推论

有一个角等于60°的等腰三角形是等边三角形

37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38、直角三角形斜边上的中线等于斜边上的一半

39、定理

线段垂直平分线上的点和这条线段两个端点的距离相等

40、逆定理

和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42、定理1

关于某条直线对称的两个图形是全等形

43、定理

如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44、定理3

两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45、逆定理

如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46、勾股定理

直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2

47、勾股定理的逆定理

如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形

48、定理

四边形的内角和等于360°

49、四边形的外角和等于360°

50、多边形内角和定理

n边形的内角的和等于(n-2)×180°

51、推论

任意多边的外角和等于360°

52、平行四边形性质定理1

平行四边形的对角相等

53、平行四边形性质定理2

平行四边形的对边相等

54、推论

夹在两条平行线间的平行线段相等

55、平行四边形性质定理3

平行四边形的对角线互相平分

56、平行四边形判定定理1

两组对角分别相等的四边形是平行四边形

57、平行四边形判定定理2

两组对边分别相等的四边

形是平行四边形

58、平行四边形判定定理3

对角线互相平分的四边形是平行四边形

59、平行四边形判定定理4

一组对边平行相等的四边形是平行四边形

60、矩形性质定理1

矩形的四个角都是直角

61、矩形性质定理2

矩形的对角线相等

62、矩形判定定理1

有三个角是直角的四边形是矩形

63、矩形判定定理2

对角线相等的平行四边形是矩形

64、菱形性质定理1

菱形的四条边都相等

65、菱形性质定理2

菱形的对角线互相垂直,并且每一条对角线平分一组对角

66、菱形面积=对角线乘积的一半,即S=(a×b)÷2

67、菱形判定定理1

四边都相等的四边形是菱形

68、菱形判定定理2

对角线互相垂直的平行四边形是菱形

69、正方形性质定理1

正方形的四个角都是直角,四条边都相等

70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71、定理1

关于中心对称的.两个图形是全等的

72、定理2

关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73、逆定理

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74、等腰梯形性质定理

等腰梯形在同一底上的两个角相等

75、等腰梯形的两条对角线相等

76、等腰梯形判定定理

在同一底上的两个角相等的梯

形是等腰梯形

77、对角线相等的梯形是等腰梯形

78、平行线等分线段定理

如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79、推论1

经过梯形一腰的中点与底平行的直线,必平分另一腰

80、推论2

经过三角形一边的中点与另一边平行的直线,必平分第三边

81、三角形中位线定理

三角形的中位线平行于第三边,并且等于它的一半

82、梯形中位线定理

梯形的中位线平行于两底,并且等于两底和的一半

L=(a+b)÷2

S=L×h

83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

如果

ad=bc,那么a:b=c:d

84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

86、平行线分线段成比例定理

三条平行线截两条直线,所得的对应线段成比例

87、推论

平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88、定理

如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89、平行于三角形的一边,并且和其他两边相交的直线,

所截得的三角形的三边与原三角形三边对应成比例

90、定理

平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91、相似三角形判定定理1

两角对应相等,两三角形相似(ASA)

92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93、判定定理2

两边对应成比例且夹角相等,两三角形相似(SAS)

94、判定定理3

三边对应成比例,两三角形相似(SSS)

95、定理

如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似(HL)

96、性质定理1

相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97、性质定理2

相似三角形周长的比等于相似比

98、性质定理3

相似三角形面积的比等于相似比的平方

99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

(a<90)

100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

101、圆是定点的距离等于定长的点的集合

102、圆的内部可以看作是圆心的距离小于半径的点的集合

103、圆的外部可以看作是圆心的距离大于半径的点的集合

104、同圆或等圆的半径相等

105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107、到已知角的两边距离相等的点的轨迹,是这个角的平分线

108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109、定理

不在同一直线上的三点确定一个圆。

110、垂径定理

垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111、推论1

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧(直径)

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112、推论2

圆的两条平行弦所夹的弧相等

113、圆是以圆心为对称中心的中心对称图形

114、定理

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115、推论

在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116、定理

一条弧所对的圆周角等于它所对的圆心角的一半

117、推论1

同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118、推论2

半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119、推论3

如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120、定理

圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121、①直线L和⊙O相交

0<=d<r

②直线L和⊙O相切

d=r

③直线L和⊙O相离

d>r

122、切线的判定定理

经过半径的外端并且垂直于这条半径的直线是圆的切线

123、切线的性质定理

圆的切线垂直于经过切点的半径

124、推论1

经过圆心且垂直于切线的直线必经过切点

125、推论2

经过切点且垂直于切线的直线必经过圆心

126、切线长定理

从圆外一点引圆的两条切线相交与一点,它们的切线长相等

,圆心和这一点的连线平分两条切线的夹角

127、圆的外切四边形的两组对边的和相等

128、弦切角定理

弦切角等于它所夹的弧对的圆周角?

129、推论

如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130、相交弦定理

圆内的两条相交弦,被交点分成的两条线段长的积相等

131、推论

如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

132、切割线定理

从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项?

133、推论

从圆外一点引圆的两条割线,这一点到每条

割线与圆的交点的两条线段长的积相等

134、如果两个圆相切,那么切点一定在连心线上

135、①两圆外离

d>R+r

②两圆外切

d=R+r

③两圆相交

R-r<d<R+r(R>r)

④两圆内切

d=R-r(R>r)

⑤两圆内含

d<R-r(R>r)

136、定理

相交两圆的连心线垂直平分两圆的公共弦

137、定理

把圆平均分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138、定理

任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139、正n边形的每个内角都等于(n-2)×180°/n

140、定理

正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141、正n边形的面积Sn=pn*rn/2

p表示正n边形的周长

142、正三角形面积√3a^2/4

a表示边长

143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144、弧长计算公式:L=n兀R/180——》L=nR

145、扇形面积公式:S扇形=n兀R^2/360=LR/2

146、内公切线长=d-(R-r)

外公切线长=d-(R+r)

初中数学知识点总结 篇2

数轴

⒈数轴的概念

规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不

可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系

⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

3.利用数轴表示两数大小

⑴在数轴上数的大小比较,右边的数总比左边的数大;

⑵正数都大于0,负数都小于0,正数大于负数;

⑶两个负数比较,距离原点远的数比距离原点近的数小。

4.数轴上特殊的(小)数

⑴最小的自然数是0,无的自然数;

⑵最小的正整数是1,无的正整数;

⑶的负整数是-1,无最小的负整数

5.a可以表示什么数

⑴a>0表示a是正数;反之,a是正数,则a>0;

⑵a0时,-a0(负数的相反数是正数)

当a=0时,-a=0,(0的相反数是0)

初中数学知识点总结 篇3

最简单的解释就是,不等式是指用不等号可以将两个解析式连接起来所成的式子。

1.概念:在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式.例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3,5x≠5等>x是超越不等式。

2、分类:不等式分为严格不等式与非严格不等式。

一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)

“≥”(大于等于符号)“≤”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式。

通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。

我们大家在判定不等式时要记得,在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式。

初中数学知识点总结 篇4

初中数学多项式的加法中考知识点

多项式和单项式一起被称为整式,整式的运算离不开加法,多项式也是如此。

多项式的加法

有限个单项式之和称为多元多项式,简称多项式。不同类的单项式之和表示的多项式,其中系数不为零的单项式的最高次数,称为此多项式的次数。

多项式的加法,是指多项式中同类项的系数相加,字母保持不变(即合并同类项)。多项式的乘法,是指把一个多项式中的每个单项式与另一个多项式中的每个单项式相乘之后合并同类项。

F上x1,x2,…,xn的多项式全体所成的集合F[x1,x2,…,xn],对于多项式的加法和乘法成为一个环,是具有单位元素的整环。 域上的多元多项式也有因式分解惟一性定理。

关于多项式的加法计算的中考知识要领已经为大家整合出来了,请同学们相应做好笔记了。

初中数学知识点总结 篇5

1、正数和负数的有关概念

(1)正数:比0大的数叫做正数;

负数:比0小的数叫做负数;

0既不是正数,也不是负数。

(2)正数和负数表示相反意义的量。

2、有理数的概念及分类

3、有关数轴

(1)数轴的三要素:原点、正方向、单位长度。数轴是一条直线。

(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

(2)相反数:符号不同、绝对值相等的两个数互为相反数。

若a、b互为相反数,则a+b=0;

相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。

(3)绝对值最小的数是0;绝对值是本身的数是非负数。

4、任何数的绝对值是非负数。

最小的正整数是1,最大的负整数是-1。

5、利用绝对值比较大小

两个正数比较:绝对值大的那个数大;

两个负数比较:先算出它们的绝对值,绝对值大的反而小。

6、有理数加法

(1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和.

(2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零.

(3)一个数同零相加,仍得这个数.

加法的交换律:a+b=b+a

加法的结合律:(a+b)+c=a+(b+c)

7、有理数减法:减去一个数,等于加上这个数的相反数。

8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12-25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和.”

9、有理数的乘法

两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。

第一步:确定积的符号第二步:绝对值相乘

10、乘积的符号的确定

几个有理数相乘,因数都不为0时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;

当负因数有偶数个时,积为正。几个有理数相乘,有一个因数为零,积就为零。

11、倒数:乘积为1的两个数互为倒数,0没有倒数。

正数的倒数是正数,负数的倒数是负数。(互为倒数的两个数符号一定相同)

倒数是本身的只有1和-1。

初中数学知识点总结 篇6

中考数学知识点:分式混合运算法则

分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简.

分式混合运算法则:

分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);

乘法进行化简,因式分解在先,分子分母相约,然后再行运算;

加减分母需同,分母化积关键;找出最简公分母,通分不是很难;

变号必须两处,结果要求最简.

中考数学二次根式的加减法知识点总结

二次根式的加减法

知识点1:同类二次根式

(Ⅰ)几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如这样的二次根式都是同类二次根式。

(Ⅱ)判断同类二次根式的方法:(1)首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否相同。(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。

知识点2:合并同类二次根式的方法

合并同类二次根式的理论依据是逆用乘法对加法的分配律,合并同类二次根式,只把它们的系数相加,根指数和被开方数都不变,不是同类二次根式的不能合并。

知识点3:二次根式的加减法则

二次根式相加减先把各个二次根式化成最简二次根式,再把同类二次根式合并,合并的方法为系数相加,根式不变。

知识点4:二次根式的混合运算方法和顺序

运算方法是利用加、减、乘、除法则以及与多项式乘法类似法则进行混合运算。运算的顺序是先乘方,后乘除,最后加减,有括号的先算括号内的。

知识点5:二次根式的加减法则与乘除法则的区别

乘除法中,系数相乘,被开方数相乘,与两根式是否是同类根式无关,加减法中,系数相加,被开方数不变而且两根式须是同类最简根式。

中考数学知识点:直角三角形

★重点★解直角三角形

☆内容提要☆

一、三角函数

1.定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.

2.特殊角的三角函数值:

0°30°45°60°90°

sinα

cosα

tgα/

ctgα/

3.互余两角的三角函数关系:sin(90°-α)=cosα;…

4.三角函数值随角度变化的关系

5.查三角函数表

二、解直角三角形

1.定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

2.依据:①边的关系:

②角的关系:A+B=90°

③边角关系:三角函数的定义。

注意:尽量避免使用中间数据和除法。

三、对实际问题的处理

1.俯、仰角:

2.方位角、象限角:

3.坡度:

4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

初中数学知识点总结 篇7

其实角的大小与边的长短没有关系,角的大小决定于角的两条边张开的程度。

角的静态定义

具有公共端点的两条射线组成的图形叫做角(angle)。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

角的动态定义

一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

角的符号

角的符号:∠

角的种类

在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

锐角:大于0°,小于90°的角叫做锐角。

直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:等于180°的角叫做平角。

优角:大于180°小于360°叫优角。

劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

角周角:等于360°的角叫做周角。

负角:按照顺时针方向旋转而成的角叫做负角。

正角:逆时针旋转的角为正角。

0角:等于零度的角。

特殊角

余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

邻补角:两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,互为邻补角。

内错角:互相平行的两条直线直线,被第三条直线所截,如果两个角都在两条直线的

内侧,并且在第三条直线的两侧,那么这样的一对角叫做内错角(alternateinteriorangle)。如:∠1和∠6,∠2和∠5

同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角。如:∠1和∠5,∠2和∠6

同位角:两个角都在截线的同旁,又分别处在被截的两条直线同侧,具有这样位置关系的一对角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7

外错角:两条直线被第三条直线所截,构成了八个角。如果两个角都在两条被截线的外侧,并且在截线的两侧,那么这样的一对角叫做外错角。例如:∠4与∠7,∠3与∠8。

同旁外角:两个角都在截线的同一侧,且在两条被截线之外,具有这样位置关系的一对角互为同旁外角。如:∠4和∠8,∠3和∠7

终边相同的角:具有共同始边和终边的角叫终边相同的角。与角a终边相同的角属于集合:

A{bb=k_360+a,k∈Z}表示角度制;

B{bb=2kπ+a,k∈Z}表示弧度制

初中数学知识点总结 篇8

①直线和圆无公共点,称相离。AB与圆O相离,d>r。

②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d

③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)

平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:

1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程

如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

当x=-C/Ax2时,直线与圆相离;

初中数学知识点总结 篇9

基于质数定义的基础之上而建立的问题有很多世界级的难题,如哥德巴赫猜想等。

质数

质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。

素数在数论中有着很重要的地位。比1大但不是素数的数称为合数。1和0既非素数也非合数。质数是与合数相对立的两个概念,二者构成了数论当中最基础的定义之一。

算术基本定理证明每个大于1的正整数都可以写成素数的乘积,并且这种乘积的形式是唯一的。这个定理的重要一点是,将1排斥在素数集合以外。如果1被认为是素数,那么这些严格的阐述就不得不加上一些限制条件。

概念

只有1和它本身两个约数的自然数,叫质数(Prime Number)。(如:由2÷1=2,2÷2=1,可知2的约数只有1和它本身2这两个约数,所以2就是质数。与之相对立的是合数:“除了1和它本身两个约数外,还有其它约数的数,叫合数。”如:4÷1=4,4÷2=2,4÷4=1,很显然,4的约数除了1和它本身4这两个约数以外,还有约数2,所以4是合数。)

100以内的质数有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100内共有25个质数。

注:1既不是质数也不是合数。因为它的约数有且只有1这一个约数。

初中数学知识点总结 篇10

一、数与代数

a、数与式:

1、有理数:

①整数→正整数/0/负整数

②分数→正分数/负分数

数轴:

①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:

①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:

①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:

①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:

①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫幂,a叫底数,n叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数

平方根:

①如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。

②如果一个数x的平方等于a,那么这个数x就叫做a的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数a的平方根运算,叫做开平方,其中a叫做被开方数。

立方根:

①如果一个数x的立方等于a,那么这个数x就叫做a的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数a的立方根的运算叫开立方,其中a叫做被开方数。

实数:

①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

3、代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:

①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式

整式:

①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。

③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:am+an=a(m+n)

(am)n=amn

(a/b)n=an/bn除法一样。

整式的乘法:

①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式/完全平方公式

整式的除法:

①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:

①整式a除以整式b,如果除式b中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

初中数学知识点:直线的位置与常数的关系

①k>0则直线的倾斜角为锐角

②k<0则直线的倾斜角为钝角

③图像越陡,|k|越大

④b>0直线与y轴的交点在x轴的上方

⑤b<0直线与y轴的交点在x轴的下方

初中数学知识点总结 篇11

把一元二次方程化成ax2+bx+c的一般形式,然后把各项系数a, b, c的值代入求根公式就可得到方程的根。

公式法

公式:x=[-b±√(b2-4ac)]/2a

当Δ=b2-4ac>0时,求根公式为x1=[-b+√(b2-4ac)]/2a,x2=[-b-√(b24ac)]/2a(两个不相等的实数根)

当Δ=b2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根)

当Δ=b2-4ac<0时,求根公式为x1=[-b+√(4ac-b2)i]/2a,x2=[-b-√(4ac-b2)i]/2a

例3.用公式法解方程 2x2-8x=-5

解:将方程化为一般形式:2x2-8x+5=0

∴a=2, b=-8,c=5

b2-4ac=(-8)2-4×2×5=64-40=24>0

∴x= (4±√6)/2

∴原方程的解为x?=(4+√6)/2,x?=(4-√6)/2.

大家不知道的是两个复数根在初中数学的学习中理解为无实数根。

初中数学知识点总结 篇12

1.有理数:

(1)凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类:①②

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)相反数的和为0?a+b=0?a、b互为相反数。

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2)绝对值可表示为:或;绝对值的问题经常分类讨论;

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数>0,小数—大数<0。

6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

7.有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数。

8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c)。

9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

10.有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

11.有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac。

12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

13.有理数乘方的法则:

(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(—a)n=—an或(a—b)n=—(b—a)n,当n为正偶数时:(—a)n=an或(a—b)n=(b—a)n。

14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

18.混合运算法则:先乘方,后乘除,最后加减。

本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题。

体验数学发展的一个重要原因是生活实际的需要。激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。

初中数学知识点总结 篇13

一元一次方程定义

通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。

一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。

即一元一次方程必须同时满足4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1;⑷含未知数的项的系数不为0。

一元一次方程的五个核心问题

一、什么是等式?1+1=1是等式吗?

表示相等关系的式子叫做等式,等式可分三类:第一类是恒等式,就是用任何允许的数值代替等式中的字母,等式的两边总是相等,由数字组成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二类是条件等式,也就是方程,这类等式只能取某些数值代替等式中的字母时,等式才成立,如x+y=-5,x+4=7等都是条件等式;第三类是矛盾等式,就是无论用任何值代替等式中的字母,等式总不成立,如x2=-2,|a|+5=0等。

一个等式中,如果等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。

等式与代数式不同,等式中含有等号,代数式中不含等号。

等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式,所得结果仍然是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零,所得结果仍然是一个等式。

二、什么是方程,什么是一元一次方程?

含有未知数的等式叫做方程,如2x-3=8,x+y=7等。判断一个式子是否是方程,只需看两点:一是不是等式;二是否含有未知数,两者缺一不可。

只含有一个未知数,并且含未知数的式子都是整式,未知数的次数是1,系数不是0的方程叫做一元一次方程。其标准形式是ax+b=0(a不为0,a,b是已知数),值得注意的是1)一个整式方程的"元"和"次"是将这个方程化成最简形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化简后,它实际上是一个一元一次方程。(2)整式方程分母中不含有未知数。判断是否为整式方程,是不能先将它化简的如方程x+1/x=2+1/x,因为它的分母中含有未知数x,所以,它不是整式方程。如果将上面的方程进行化简,则为x=2,这时再去作判断,将得到错误的结论。

凡是谈到次数的方程,都是指整式方程,即方程的两边都是整式。一元一次方程是整式方程中元数最少且次数最低的方程。

三、等式有什么牛掰的基本性质吗?

将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项,移项的依据是等式的基本性质1。

移项时不一定要把含未知数的项移到等式的左边。如解方程3x-2=4x-5时就可以把含未知数的项移到右边,而把常数项移到左边,这样会显得简便些。

去分母,将未知数的系数化为1,则是依据等式的基本性质2进行的。

四、等式一定是方程吗?方程一定是等式吗?

等式与方程有很多相同之处。如都是用等号连接的,等号左、右两边都是代数式,但它们还是有区别的。方程仅是含有未知数的等式,是等式中的特例。就是说,等式包含方程;反过来,方程并不包含所有的等式。如,13+5=18,18-13=5都属于等式,但它们并不是方程。因此,等式一定是方程的说法是不对的。

五、"解方程"与"方程的解"是一回事儿吗?

方程的解是使方程左、右两边相等的未知数的取值。而解方程是求方程的解或判断方程无解的过程。即方程的解是结果,而解方程是一个过程。方程的解中的"解"是名词,而解方程中的"解"是动词,二者不能混淆。

初中数学知识点总结 篇14

动点与函数图象问题常见的四种类型:

1、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

2、四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

3、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象.

4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象.

图形运动与函数图象问题常见的三种类型:

1、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

2、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

3、多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

动点问题常见的四种类型:

1、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.

2、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.

3、圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系.

4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.

总结反思:

本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,三角形全等的判定和性质,等腰直角三角形的性质,平行线的性质等,数形结合思想的应用是解题的关键.

解答动态性问题通常是对几何图形运动过程有一个完整、清晰的认识,发掘“动”与“静”的内在联系,寻求变化规律,从变中求不变,从而达到解题目的.

解答函数的图象问题一般遵循的步骤:

1、根据自变量的取值范围对函数进行分段.

2、求出每段的解析式.

3、由每段的解析式确定每段图象的形状.

对于用图象描述分段函数的实际问题,要抓住以下几点:

1、自变量变化而函数值不变化的图象用水平线段表示.

2、自变量变化函数值也变化的增减变化情况.

3、函数图象的最低点和最高点.

初中数学知识点总结 篇15

三角形的知识点

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形的分类

3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7、高线、中线、角平分线的意义和做法

8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9、三角形内角和定理:三角形三个内角的和等于180°

推论1直角三角形的两个锐角互余

推论2三角形的一个外角等于和它不相邻的两个内角和

推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

11、三角形外角的性质

(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

(2)三角形的一个外角等于与它不相邻的两个内角和;

(3)三角形的一个外角大于与它不相邻的任一内角;

(4)三角形的外角和是360°。

四边形(含多边形)知识点、概念总结

一、平行四边形的定义、性质及判定

1、两组对边平行的四边形是平行四边形。

2、性质:

(1)平行四边形的对边相等且平行

(2)平行四边形的对角相等,邻角互补

(3)平行四边形的对角线互相平分

3、判定:

(1)两组对边分别平行的四边形是平行四边形

(2)两组对边分别相等的四边形是平行四边形

(3)一组对边平行且相等的四边形是平行四边形

(4)两组对角分别相等的四边形是平行四边形

(5)对角线互相平分的四边形是平行四边形

4、对称性:平行四边形是中心对称图形

二、矩形的定义、性质及判定

1、定义:有一个角是直角的平行四边形叫做矩形

2、性质:矩形的四个角都是直角,矩形的对角线相等

3、判定:

(1)有一个角是直角的平行四边形叫做矩形

(2)有三个角是直角的四边形是矩形

(3)两条对角线相等的平行四边形是矩形

4、对称性:矩形是轴对称图形也是中心对称图形。

三、菱形的定义、性质及判定

1、定义:有一组邻边相等的平行四边形叫做菱形

(1)菱形的四条边都相等

(2)菱形的.对角线互相垂直,并且每一条对角线平分一组对角

(3)菱形被两条对角线分成四个全等的直角三角形

(4)菱形的面积等于两条对角线长的积的一半

2、s菱=争6(n、6分别为对角线长)

3、判定:

(1)有一组邻边相等的平行四边形叫做菱形

(2)四条边都相等的四边形是菱形

(3)对角线互相垂直的平行四边形是菱形

4、对称性:菱形是轴对称图形也是中心对称图形

四、正方形定义、性质及判定

1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

2、性质:

(1)正方形四个角都是直角,四条边都相等

(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

(4)正方形的对角线与边的夹角是45°

(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

3、判定:

(1)先判定一个四边形是矩形,再判定出有一组邻边相等

(2)先判定一个四边形是菱形,再判定出有一个角是直角

4、对称性:正方形是轴对称图形也是中心对称图形

五、梯形的定义、等腰梯形的性质及判定

1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

4、对称性:等腰梯形是轴对称图形

六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。

七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

九、多边形

1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

2、多边形的内角:多边形相邻两边组成的角叫做它的内角。

3、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

4、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

5、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

6、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

7、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

8、公式与性质

多边形内角和公式:n边形的内角和等于(n-2)·180°

9、多边形外角和定理:

(1)n边形外角和等于n·180°-(n-2)·180°=360°

(2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

10、多边形对角线的条数:

(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形

(2)n边形共有n(n-3)/2条对角线

圆知识点、概念总结

1、不在同一直线上的三点确定一个圆。

2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1①(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2圆的两条平行弦所夹的弧相等

3、圆是以圆心为对称中心的中心对称图形

4、圆是定点的距离等于定长的点的集合

5、圆的内部可以看作是圆心的距离小于半径的点的集合

6、圆的外部可以看作是圆心的距离大于半径的点的集合

7、同圆或等圆的半径相等

8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

12、①直线L和⊙O相交d

②直线L和⊙O相切d=r

③直线L和⊙O相离d>r

13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

14、切线的性质定理:圆的切线垂直于经过切点的半径

15、推论1经过圆心且垂直于切线的直线必经过切点

16、推论2经过切点且垂直于切线的直线必经过圆心

17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

18、圆的外切四边形的两组对边的和相等,外角等于内对角

19、如果两个圆相切,那么切点一定在连心线上

20、①两圆外离d>R+r

②两圆外切d=R+r

③两圆相交R-rr)

④两圆内切d=R-r(R>r)⑤两圆内含dr)

21、定理:相交两圆的连心线垂直平分两圆的公共弦

22、定理:把圆分成n(n≥3):

(1)依次连结各分点所得的多边形是这个圆的内接正n边形

(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

24、正n边形的每个内角都等于(n-2)×180°/n

25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

26、正n边形的面积Sn=pnrn/2p表示正n边形的周长

27、正三角形面积√3a/4a表示边长

28、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

29、弧长计算公式:L=n兀R/180

30、扇形面积公式:S扇形=n兀R^2/360=LR/2

31、内公切线长=d-(R-r)外公切线长=d-(R+r)

32、定理:一条弧所对的圆周角等于它所对的圆心角的一半

33、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

34、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

35、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

初中数学知识点总结 篇16

二次根式

1、二次根式:一般地,式子叫做二次根式。

注意:

(1)若这个条件不成立,则不是二次根式;

(2)是一个重要的非负数,即; ≥0。

2、重要公式:

3、积的算术平方根:

积的算术平方根等于积中各因式的算术平方根的积;

4、二次根式的乘法法则:。

5、二次根式比较大小的方法:

(1)利用近似值比大小;

(2)把二次根式的系数移入二次根号内,然后比大小;

(3)分别平方,然后比大小。

6、商的算术平方根:,

商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

7、二次根式的除法法则:

分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

8、最简二次根式:

(1)满足下列两个条件的二次根式,叫做最简二次根式,

①被开方数的因数是整数,因式是整式,

②被开方数中不含能开的尽的因数或因式;

(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;

(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;

(4)二次根式计算的最后结果必须化为最简二次根式。

9、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。

10、二次根式的混合运算:

(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;

(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。

一元二次方程

1、一元二次方程的一般形式:

a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。

2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。

3。一元二次方程根的判别式:当ax2+bx+c=0

(a≠0)时,Δ=b2—4ac叫一元二次方程根的判别式。请注意以下等价命题:

Δ>0 有两个不等的实根;

Δ=0 有两个相等的实根;Δ<0 无实根;

4。平均增长率问题————————应用题的类型题之一(设增长率为x):

(1)第一年为a ,第二年为a(1+x) ,第三年为a(1+x)2。

(2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和。

旋转

1、概念:

把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。

旋转三要素:旋转中心、旋转方面、旋转角

2、旋转的性质:

(1)旋转前后的两个图形是全等形;

(2)两个对应点到旋转中心的距离相等

(3)两个对应点与旋转中心的连线段的夹角等于旋转角

3、中心对称:

把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

这两个图形中的对应点叫做关于中心的对称点。

4、中心对称的性质:

(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

(2)关于中心对称的两个图形是全等图形。

5、中心对称图形:

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

初中数学知识点总结 篇17

1、一元一次方程根的情况

△=b2-4ac

当△>0时,一元二次方程有2个不相等的实数根;

当△=0时,一元二次方程有2个相同的实数根;

当△<0时,一元二次方程没有实数根

2、平行四边形的性质:

①两组对边分别平行的四边形叫做平行四边形。

②平行四边形不相邻的两个顶点连成的线段叫他的对角线。

③平行四边形的对边/对角相等。

④平行四边形的对角线互相平分。

菱形:①一组邻边相等的平行四边形是菱形

②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。

③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。

矩形与正方形:

①有一个内角是直角的平行四边形叫做矩形。

②矩形的对角线相等,四个角都是直角。

③对角线相等的平行四边形是矩形。

④正方形具有平行四边形,矩形,菱形的一切性质。

⑤一组邻边相等的矩形是正方形。

多边形:

①N边形的内角和等于(N-2)180度

②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)

平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X

加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

初中数学知识点总结 篇18

自然数的分类包括了奇数和偶数,质数与合数、1和0。

自然数的分类

①按能否被2整除分

可分为奇数和偶数。

1、奇 数:不能被2整除的数叫奇数。

2、偶 数:能被2整除的数叫偶数。

注:0是偶数。(20__年国际数学协会规定,零为偶数.我国20__年也规定零为偶数。偶数可以被2整除,0照样可以,只不过得数依然是0而已)。

②按因数个数分

可分为质数、合数、1和0。

1、质 数:只有1和它本身这两个因数的自然数叫做质数。也称作素数。

2、合 数:除了1和它本身还有其它的因数的自然数叫做合数。

3、1:只有1个因数。它既不是质数也不是合数。

4、当然0不能计算因数,和1一样,也不是质数也不是合数。

备注:这里是因数不是约数。

同学们对于“0”,它是否包括在自然数之内存在争议,其实学术界目前关于这个问题尚无一致意见。

初中数学知识点总结 篇19

1、图形的相似

相似多边形的对应边的比值相等,对应角相等;

两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;

相似比:相似多边形对应边的比值。

2、相似三角形

判定:

平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;

如果两个三角形的三组对应边的比相等,那么这两个三角形相似;

如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;

如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。

3相似三角形的周长和面积

相似三角形(多边形)的周长的比等于相似比;

相似三角形(多边形)的面积的比等于相似比的平方。

初中数学知识点总结 篇20

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:

①在同一平面

②两条数轴

③互相垂直

④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向。

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成。

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成。

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

初中数学知识点总结 篇21

一、圆

1、圆的有关性质

在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。

由圆的意义可知:

圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。

圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧。小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。

圆心相同,半径不相等的两个圆叫同心圆。

能够重合的两个圆叫等圆。

同圆或等圆的`半径相等。

在同圆或等圆中,能够互相重合的弧叫等弧。

二、过三点的圆

1、过三点的圆

过三点的圆的作法:利用中垂线找圆心

定理不在同一直线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

2、反证法

反证法的三个步骤:

①假设命题的结论不成立。

②从这个假设出发,经过推理论证,得出矛盾。

③由矛盾得出假设不正确,从而肯定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明:设有两个以上是钝角。

则两个钝角之和>180°

与三角形内角和等于180°矛盾。

不可能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径

圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。

弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

推理2:圆两条平行弦所夹的弧相等。

四、圆心角、弧、弦、弦心距之间的关系

圆是以圆心为对称中心的中心对称图形。

实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。

顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。

定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。

推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。

五、圆周角

顶点在圆上,并且两边都和圆相交的角叫圆周角。

推理1:同弧或等弧所对的圆周角相等。同圆或等圆中,相等的圆周角所对的弧也相等。

推理2:半圆(或直径)所对的圆周角是直角。90°的圆周角所对的弦是直径。

推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。

初中数学知识点总结 篇22

知识要领:非负数,顾名思义,就是不是负数的数,也就是零和正实数。例如:0、3.4、9/10、π(圆周率)。

非负数

非负数大于或等于0。

非负数中含有有理数和无理数。

非负数的和或积仍是非负数。

非负数的和为零,则每个非负数必等于零。

非负数的积为零,则至少有一个非负数为零。

非负数的绝对值等于本身。

常见的非负数

实数的绝对值、实数的偶次幂、算术根等都是常见的非负数。

常见表现形式

非负数的准确数学表达是a≥0、│a│、a^2n是常见的非负数。

知识归纳:任何一个非负数乘以-1都会得到一个非正数。

初中数学知识点总结 篇23

一.有理数

知识网络:

概念、定义:

1、大于0的数叫做正数(positive number)。

2、在正数前面加上负号“-”的数叫做负数(negative number)。

3、整数和分数统称为有理数(rational number)。

4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。

5、在直线上任取一个点表示数0,这个点叫做原点(origin)。

6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。

7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

8、正数大于0,0大于负数,正数大于负数。

9、两个负数,绝对值大的反而小。

10、有理数加法法则

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

13、有理数减法法则

减去一个数,等于加上这个数的相反数。

14、有理数乘法法则

两数相乘,同号得正,异号得负,并把绝对值向乘。

任何数同0相乘,都得0。

15、有理数中仍然有:乘积是1的两个数互为倒数。

16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

19、有理数除法法则

除以一个不等于0的数,等于乘这个数的倒数。

20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an 中,a叫做底数(basenumber),n叫做指数(exponeht)

22、根据有理数的乘法法则可以得出

负数的奇次幂是负数,负数的偶次幂是正数。

显然,正数的任何次幂都是正数,0的任何次幂都是0。

23、做有理数混合运算时,应注意以下运算顺序:

(1)先乘方,再乘除,最后加减;

(2)同级运算,从左到右进行;

(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

24、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。

25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。

26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)

注:黑体字为重要部分

二.整式的加减

知识网络:

概念、定义:

1、都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。

2、单项式中的数字因数叫做这个单项式的系数(coefficient)。

3、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。

4、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly

term)。

5、多项式里次数最高项的次数,叫做这个多项式的次数(degree of a polynomial)。

6、把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

三.一元一次方程

知识网络:

概念、定义:

1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。

2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown)。

3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

5、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

6、把等式一边的某项变号后移到另一边,叫做移项。

7、应用:行程问题:s=v×t 工程问题:工作总量=工作效率×时间

盈亏问题:利润=售价-成本 利率=利润÷成本×100%

售价=标价×折扣数×10% 储蓄利润问题:利息=本金×利率×时间

本息和=本金+利息

四.图形初步认识

知识网络:

概念、定义:

1、我们把实物中抽象的各种图形统称为几何图形(geometric figure)。

2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的.各部分不都在同一平面内,它们是立体图形(solidfigure)。

3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure)。

4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net)。

5、几何体简称为体(solid)。

6、包围着体的是面(surface),面有平的面和曲的面两种。

7、面与面相交的地方形成线(line),线和线相交的地方是点(point)。

8、点动成面,面动成线,线动成体。

9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。

简述为:两点确定一条直线(公理)。

10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection)。

11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center)。

12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。简单说成:两点之间,线段最短。(公理)

13、连接两点间的线段的长度,叫做这两点的距离(distance)。

14、角∠(angle)也是一种基本的几何图形。

15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。

16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector)。

17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementary

angle),即其中的每一个角是另一个角的余角。

18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementary

angle),即其中一个角是另一个角的补角

19、等角的补角相等,等角的余角相等。

初中数学知识点总结 篇24

1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

3.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解)。

4.列一元一次方程解应用题:

(1)读题分析法:多用于“和,差,倍,分问题”

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套—————”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。

(2)画图分析法:多用于“行程问题”

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

11.列方程解应用题的常用公式:

(1)行程问题:距离=速度·时间;

(2)工程问题:工作量=工效·工时;

(3)比率问题:部分=全体·比率;

(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度—水流速度;

(5)商品价格问题:售价=定价·折·,利润=售价—成本,;

(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,

S正方形=a2,S环形=π(R2—r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h。

本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。

初中数学知识点总结 篇25

1、重心的定义:平面图形中,几何图形的重心是当支撑或悬挂时图形能在水平面处于平衡状态,此时的支撑点或者悬挂点叫做平衡点,也叫做重心。

2、几种几何图形的重心:

⑴线段的重心就是线段的中点;

⑵平行四边形及特殊平行四边形的重心是它的两条对角线的交点;

⑶三角形的三条中线交于一点,这一点就是三角形的重心;

⑷任意多边形都有重心,以多边形的任意两个顶点作为悬挂点,把多边形悬挂时,过这两点铅垂线的交点就是这个多边形的重心。

提示:⑴无论几何图形的形状如何,重心都有且只有一个;

⑵从物理学角度看,几何图形在悬挂或支撑时,位于重心两边的力矩相同。

3、常见图形重心的性质:

⑴线段的重心把线段分为两等份;

⑵平行四边形的重心把对角线分为两等份;

⑶三角形的重心把中线分为1:2两部分(重心到顶点距离占2份,重心到对边中点距离占1份)。

上面对重心知识点的巩固学习,同学们都能熟练的掌握了吧,希望同学们很好的复习学习数学知识。

初中数学知识点总结 篇26

1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5.等腰三角形的判定:等角对等边。

6.等边三角形角的特点:三个内角相等,等于60°,

7.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形

有两个角是60°的三角形是等边三角形。

8.直角三角形中,30°角所对的直角边等于斜边的一半。

9.直角三角形斜边上的中线等于斜边的一半。

本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。

初中数学知识点总结 篇27

初中数学长方形的中考知识点集锦

长方形也就是我们所说的矩形,是基础的平面图形。

长方形

有一个角是直角的平行四边形叫做长方形 (rectangle)。又叫矩形。

长方形长与宽的定义:

第一种意见:长方形长的那条边叫长,短的那条边叫宽。

第二种意见:和水平面同方向的叫做长,反之就叫做宽。长方形的长和宽是相对的,不能绝对的说“长比宽长”,但习惯地讲,长的为长,短的为宽。

长方形的性质

①两条对角线相等;

②两条对角线互相平分;

③两组对边分别平行;

④两组对边分别相等 ;

⑤四个角都是直角;

⑥有2条对称轴(正方形有4条)。

以上的内容是长方形的性质及定义,请大家做好笔记了。

初中数学知识点总结 篇28

一、平移变换:

1、概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。

2、性质:(1)平移前后图形全等;

(2)对应点连线平行或在同一直线上且相等。

3、平移的作图步骤和方法:

(1)分清题目要求,确定平移的方向和平移的距离;

(2)分析所作的图形,找出构成图形的关健点;

(3)沿一定的方向,按一定的距离平移各个关健点;

(4)连接所作的各个关键点,并标上相应的字母;

(5)写出结论。

二、旋转变换:

1、概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

说明:

(1)图形的旋转是由旋转中心和旋转的角度所决定的;

(2)旋转过程中旋转中心始终保持不动。

(3)旋转过程中旋转的方向是相同的。

(4)旋转过程静止时,图形上一个点的旋转角度是一样的。⑤旋转不改变图形的大小和形状。

2、性质:

(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前、后的图形全等。

3、旋转作图的步骤和方法:

(1)确定旋转中心及旋转方向、旋转角;

(2)找出图形的关键点;

(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;

(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。

说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。

常见考法

(1)把平移旋转结合起来证明三角形全等;

(2)利用平移变换与旋转变换的性质,设计一些题目。

误区提醒

(1)弄反了坐标平移的上加下减,左减右加的规律;

(2)平移与旋转的性质没有掌握。

初中数学知识点总结 篇29

一、角的定义

“静态”概念:有公共端点的两条射线组成的图形叫做角。

“动态”概念:角可以看作是一条射线绕其端点从一个位置旋转到另一个位置所形成的图形。

如果一个角的两边成一条直线,那么这个角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做钝角;大于0小于直角的角叫做锐角。

二、角的换算:1周角=2平角=4直角=360°;

1平角=2直角=180°;

1直角=90°;

1度=60分=3600秒(即:1°=60′=3600″);

1分=60秒(即:1′=60″).

三、余角、补角的概念和性质:

概念:如果两个角的和是一个平角,那么这两个角叫做互为补角。

如果两个角的和是一个直角,那么这两个角叫做互为余角。

说明:互补、互余是指两个角的数量关系,没有位置关系。

性质:同角(或等角)的余角相等;

同角(或等角)的补角相等。

四、角的比较方法:

角的大小比较,有两种方法:

(1)度量法(利用量角器);

(2)叠合法(利用圆规和直尺)。

五、角平分线:从一个角的顶点引出的一条射线。把这个角分成相等的两部分,这条射线叫做这个角的平分线。

常见考法

(1)考查与时钟有关的问题;(2)角的计算与度量。

误区提醒

角的度、分、秒单位的换算是60进制,而不是10进制,换算时易受10进制影响而出错。

【典型例题】(20xx云南曲靖)从3时到6时,钟表的时针旋转角的度数是

【答案】3时到6时,时针旋转的是一个周角的1/4,故是90度,本题选C.

初中数学知识点总结 篇30

1、弧长公式

n°的圆心角所对的弧长l的计算公式为L=nπr/180

2、扇形面积公式,其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长.

S=﹙n/360﹚πR2=1/2×lR

3、圆锥的侧面积,其中l是圆锥的母线长,r是圆锥的地面半径.

S=1/2×l×2πr=πrl

4、弦切角定理

弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角.

弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角.

一、选择题

1.(20__o珠海,第4题3分)已知圆柱体的底面半径为3cm,髙为4cm,则圆柱体的侧面积为

A.24πcm2B.36πcm2C.12cm2D.24cm2

考点:圆柱的计算.

分析:圆柱的侧面积=底面周长×高,把相应数值代入即可求解.

解答:解:圆柱的侧面积=2π×3×4=24π.

故选A.

点评:本题考查了圆柱的计算,解题的关键是弄清圆柱的侧面积的计算方法.

2.(20__o广西贺州,第11题3分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是

A.B.C.D.

考点:垂径定理;勾股定理;勾股定理的逆定理;弧长的计算.

分析:连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.

解答:解:连接OC,

∵△ACE中,AC=2,AE=,CE=1,

∴AE2+CE2=AC2,

∴△ACE是直角三角形,即AE⊥CD,

∵sinA==,

∴∠A=30°,

∴∠COE=60°,

∴=sin∠COE,即=,解得OC=,

∵AE⊥CD,

∴=,

∴===.

故选B.

相关栏目

财务工作总结办公室工作总结销售工作总结部门工作总结学生会工作总结班主任工作总结工作总结范文个人工作总结农村农业工作总结单位工作总结班级工作总结教师工作总结安全工作总结学校工作总结信访工作总结党委党支部工作总结德育工作总结期末工作总结工作总结结尾工作总结开头工作总结格式统计工作总结银行工作总结经济师工作总结审计工作总结工程师工作总结设计师工作总结美工工作总结科研工作总结招标工作总结业务员工作总结话务员工作总结项目工作总结营业员工作总结服务员工作总结保险工作总结秘书工作总结助理工作总结客服工作总结前台工作总结人事工作总结药师工作总结顾问工作总结律师工作总结公务员工作总结学期工作总结公司企业工作总结团委团支部工作总结幼儿园工作总结自我总结学习总结毕业总结年度工作总结人力资源工作总结培训工作总结科学发展观总结卫生工作总结思想工作总结转正工作总结其他工作总结社区工作总结会计工作总结少先队工作总结税务工作总结教学工作总结试用期工作总结出纳工作总结采购工作总结商务工作总结营销工作总结酒店工作总结护士工作总结护师工作总结导游工作总结工作总结写作指导计划生育工作总结技术工作总结工会工作总结半年工作总结学生工作总结政务工作总结医院工作总结党团工作总结编辑工作总结保安工作总结护理工作总结司法工作总结月工作总结金融类工作总结行政后勤工作总结生产工作总结