优秀七年级数学教案【优秀10篇】

发布时间:

好的数学教学计划很有意义的。科学技术的飞速发展给人类生活带来的巨大变化和灿烂前景,唤起学生热爱科学、学习科学和探索科学奥秘的浓厚兴趣。为大家精心整理了优秀七年级数学教案【优秀10篇】,如果对您有一些参考与帮助,请分享给最好的朋友。

七年级数学教案 篇1

1.教学重点、难点

重点:列代数式。

难点:弄清楚语句中各数量的意义及相互关系。

2.本节知识结构:

本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。

3.重点、难点分析:

列代数式实质是实现从基本数量关系的语言表述到代数式的`一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。

如:用代数式表示:比 的2倍大2的数。

分析 本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即 的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2 +2.

4.列代数式应注意的问题:

(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。

(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。

(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。

(4)在代数式中出现除法时,用分数线表示。

5.教法建议:

列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。

初一数学教案 篇2

相交线

课型:新授课 备课人:徐新齐 审核人:霍红超

学习目标

1、通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛

2、在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角

重点、难点

重点:邻补角、对顶角的概念,对顶角性质与应用。

难点:理解对顶角相等的性质的探索。

教学过程

一、复习导入

教师在轻松欢快的音乐中演示第五章章首图片为主体的课件。

学生欣赏图片,阅读其中的文字。

师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线。 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题。

二、自学指导

观察剪刀剪布的过程,引入两条相交直线所成的角

握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小。 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大。

三、 问题导学

认识邻补角和对顶角,探索对顶角性质

(1)。学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?

学生思考并在小组内交流,全班交流。

∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线。

∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线。

( 2)。学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有"相邻"关系的两角互补,"对顶"关系的两角相等。

(3)。概括形成邻补角、对顶角概念。

有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角。

如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角。

四、典题训练

1、例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数。

2、:判断下列图中是否存在对顶角。

小结

初一数学教案人教版 篇3

学习目标:1、理解有理数的绝对值和相反数的意义。

2、会求已知数的相反数和绝对值。

3、会用绝对值比较两个负数的大小。

4、经历将实际问题数学化的过程,感受数学与生活的联系。

学习重点:1.会用绝对值比较两个负数的大小。

2、会求已知数的相反数和绝对值。

学习难点:理解有理数的绝对值和相反数的意义。

学习过程:

一、创设情境

根据绝对值与相反数的意义填空:

1、

2、

-5的相反数是______,-10.5的相反数是______, 的相反数是______;

3、|0|=______,0的相反数是______。

二、探索感悟

1、议一议

(1)任意说出一个数,说出它的绝对值、它的相反数。

(2)一个数的绝对值与这个数本身或它的相反数有什么关系?

2、想一想

(1)2与3哪个大?这两个数的绝对值哪个大?

(2)-1与-4哪个大?这两个数的绝对值哪个大?

(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?

(4)两个有理数的大小与这两个数的绝对值的大小有什么关系?

三。例题精讲

例1. 求下列各数的绝对值:

+9,-16,-0.2,0.

求一个数的绝对值,首先要分清这个数是正数、负数还是0,然后才能正确地写出它的绝对值。

议一议:(1)两个数比较大小,绝对值大的那个数一定大吗?

(2)数轴上的点的大小是如何排列的?

例2比较-10.12与-5.2的大小。

例3.求6、-6、14 、-14 的绝对值。

小节与思考:

这节课你有何收获?

四。练习

1、 填空:

⑴ 的符号是 ,绝对值是 ;

⑵10.5的符号是 ,绝对值是

⑶符号是+号,绝对值是 的数是

⑷符号是-号,绝对值是9的数是 ;

⑸符号是-号,绝对值是0.37的数是 。

2、 正式足球比赛时所用足球的质量有严格的规定,下表是6个足球的质量检测结果(用正数记超过规定质量的克数,用负数记不足规定质量的克数)。

请指出哪个足球质量最好,为什么?

第1个第2个第3个第4个第5个第6个

-25-10+20+30+15-40

3、比较下面有理数的大小

(1)-0.7与-1.7 (2) (3) (4)-5与0

五、布置作业:

P25 习题2.3 5

家庭作业:《评价手册》 《补充习题》

六、学后记/教后记

初一第一学期数学教学计划 篇4

一、 基本情况分析

1、学生情况分析

这学期我承担七(1)(2)两班的数学教学,这些学生整体基础参差不齐,小学没有养成良好的学习习惯,所以任务艰巨。在小学所学知识的掌握程度上,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,但位数不多。对多数学生来说,简单的基础知识还不能有效掌握,成绩稍差。学生的逻辑推理、逻辑思维能力,计算能力要得到加强,还要提升整体成绩,适时补充课外知识,拓展学生的知识面,抽出一定的时间给强化几何训练,全面提升学生的数学素质。

2、教材分析:

1、第1章有理数:本章主要学习有理数的基本性质及运算。本章重点内容是有理数的概念,性质和运算。本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。

2、第2章整式的加减:本章主要是学习单项式和多项式的加减运算。本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。本章难点在于理解合并同类项和去括号的法则。

3、第3章一元一次方程:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。

4、第4章几何图形初步:本章主要学习线段和角有关的性质。本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。本章的难点在于线段和角的有关计算。

二、 教学目标和要求

(一)知识与技能

1、获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。

2、学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。体验几何定理的探究及其推理过程并学会在实际问题进行应用。

3、初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。

(二)过程与方法

1、采用思考、类比、探究、归纳、得出结论的方法进行教学;

2、发挥学生的主体作用,作好探究性活动;

3、密切联系实际,激发学生的学习的积极性,培养学生的类比、归纳的能力、

(三)情感态度与价值观

1、理解人与自然、社会的密切关系,和谐发展的主义,提高环境保护意识。

2、逐步形成数学的基本观点和科学态度,为确立辩证唯物主义世界观奠定必在的基础。

三、 提高教学质量的主要措施

1、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作考试试试卷,也让学生学会认真学习。

2、兴趣是最好的老师,激发学生的兴趣,给学生介绍数学家、数学史、介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流的氛围,分享快乐的学习课堂,让学生体会学习的快乐,享受学习。

4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

6、加强学生解题速度和准确度的培养训练,在新授课时,凡是能当堂完成的作业,要求学生比速度和准确度,谁先完成谁就先交给老师批改,凡是做的全对的依次获得前十名,以资鼓励。

7、加强个别辅导,加强面批、面改,加强定时作业的训练。并进行作业展览,对作业书写的好又全部正确的贴在学习园地中。

8、积极主动的与其他教师协同配合,认真钻研教材,搞好集体备课。

初一数学教案 篇5

教学目标

使学生进一步理解立方根的概念,并能熟练地进行求一个数的立方根的运算;

能用有理数估计一个无理数的大致范围,使学生形成估算的意识,培养学生的估算能力;

经历运用计算器探求数学规律的过程,发展合情推理能力。

教学难点

用有理数估计一个无理的大致范围。

知识重点

用有理数估计一个无理的大致范围。

对于计算器的使用,在教学中采用学生自己阅读计算器的说明书、自己操作练习来掌握用计算器进行开立方运算的方法,并让学生互相交流,让学生亲身体会到利用计算器不仅能给运算带来很大的方便,也给探求数量间的关系与变化带来方便。在教学过程中,教师要关注学生能否通过阅读,掌握用计算器进行开立方运算的简单操作;能否利用计算器探究数量间的关系,从而寻找出数量的变化关系。

使用计算器进行复杂运算,可以使学生学习的重点更好地集中到理解数学的本质上来,而估算也是一种具有实际应用价值的运算能力,在本节课的课堂教学中综合运用笔算、计算器和估算等培养学生的运算能力。

初一第一学期数学教学计划 篇6

为了更好的完成学校的初一数学的教学任务,依照教科室的计划,针对初一学生的特点和所教两个班的的具体情况特制订如下教学计划:

一、学情介绍:

我本学期担任初一七、八班的数学教学工作。初一(八)班共有学生55人,初一(七)班有学生56人。根据小学升初中考试的情况来分析学生的数学成绩不算理想,总体的水平一般,往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,因此要重视听法的指导。学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。初一学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。学生是否掌握良好的记忆方法与其学业成绩的好坏相关,初一学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应初一教学的新要求,要重视对学生进行记法指导。本学期的工作重点是扭转学生的学习态度,培养学生的好的学习习惯、创新意识,激发学生学习数学的热情和兴趣,培优补差,同时强调对数学知识的灵活运用,反对死记硬背,以推动数学教学中学生素质的培养。

二、教学措施

1、根据今年学校及教科室计划,认真构建“双思三环六步”课堂教学模式,努力提高课堂教学的有效性和实效性。双思”是指教师反思教学、学生反思学习;“三环”就是定向、内化、发展;“六步”分别是指:提供资源(入境生趣)、了解学情(自学生疑)、弄清疑难(学习释疑)、点难拨疑(练习解难)、反思教学(反思学习)、引导实践(迁移创新)。我们要在反思中成长,学生要在反思中进步;我们要反思的主要内容是怎样优化“三环六步”教学设计,不断提高课堂教学效率;学生要反思的主要内容学习积极性、学习策略和学习方法运用是否得当、不断提高学习效率。

初一学生刚刚进入初中阶段,正是从小学过度到初中学习的重要阶段,也是进行“双思三环六步”课堂教学模式的最佳时期,要逐步的培养和完善这种模式,要求我们多研究、多思考、多创新、多探究。按照“低(起点)慢(速度)多(落点)高(标准)”元素结构教学法进行教学,“低起点”考虑到学生的基础,初一学生从小学数学到初中数学的学习是一个飞跃,怎样帮助学生慢慢过渡是一个难点,从细小的问题、每一个小知识点出发结合小学知识融汇到初中的知识中去,从而使学生很快接受知识。“慢速度”反对快速度教学,主张教学要考虑学生的学习规律和接受程度,兼顾初一学生的生理、心理、知识、能力、意志、品德等特征和差异,步步为营,梯次推进,使学生有效地掌握知识和培养能力。“多落点”强调教育要考虑到初一学生个性差异的特点。个性差异是表现在多方面,不仅有年龄、性别、性格、身体的差异,还有很多学习上的差异,个人思维方式、生活方式的差异。推动不同层次的学生都有收获。“高标准”为学生确立的学习标准。而且把目标细化,使学生能很快达到,既能掌握知识又能体会到成功的愉悦,使初一的学生对数学充满兴趣,从而达到高效课堂的标准。

2、精心设计习题,使习题从简单到复杂形成梯度,引导学生学会发散思维,培养学生创造性思维的能力,实现一题多解、举一反三、触类旁通,培养思维的灵活性。

3、批改作业做到全批全改,从过程到步骤严格要求,发现问题及时解决作认好总结,从初一使学生慢慢养成认真按步骤做作业的习惯。

4、继续实行课前一题的模式。课前五分钟每个班的课代表把上一节课涉及到的典型题目呈现在黑板上,学生在解题的过程中复习上一节的内容,而且也能做到尽快把学生从课间拉回到上课的的状态,并力求把学生中新方法新思维挖掘出来。

5、实行一对一的帮扶活动,由好学生带动一个差一点的学生,从知识、作业、学习习惯等各方面互帮互助,从而全面提高学生的综合素质。

三、合理落实各项教学常规

1、备好课是上好课的基础,是提高课堂教学质量的关键。根据“双思三环六步”课堂教学模式,所以在备课时深入钻研教材,正确地掌握和处理好教材的重点、难点,准备大量的、难度不同的习题备用,备课以个人独立钻研备课为主,在此基础上进行集体备课,广泛吸取其他老师的优点和精华,完善自己的备课达到精益求精。

2、上课时要严格按照“双思三环六步”课堂教学模式的步骤进行教学,讲课时要围绕中心内容,突出重点,突破难点。整个教学过程要严密组织,使课堂教学既层次分明,又协调紧凑。教学时要面向全体学生,使各类学生都学有所得。特别是要照顾到差生,力求使他们能掌握本课时的基本知识和技能。

3、作业要求要严格,但布置的作业要适量。精选作业,根据不同程度学生,布置适当的选做题,以关注不同层次的学生,做到分层教学、布置作业。作业批改要有批语,批语要多鼓励学生,根据作业情况查缺补漏,做好个别辅导。

4、要保证后进生的进步。因为基础的不同,有一部分学生在知识的学习上有一定的困难,而且这部分学生更应该是我们关注的重点,在力所能及的情况下,特别是精心设计一些适合他们的问题和练习作业,引导他们思考,激发他们的学习兴趣,唤醒他们学习的自信心,充分利用自习课或课余时间,加强对后进生的个别辅导。

四、教研工作

利用“学科活动日”和集体备课,多加强理论学习研讨,提高理论实效,交流学习心得,积极参加教学观摩和说评课活动。结合学校的“课前四准备,课内四重视,课后四落实”课题研究做好适合数学学科和学生实际情况的训练方法;在上好每一节课的基础上,及时写出教学反思为以后工作做好总结。

五、教学进度和期末复习安排:

第一周9.7—9.13第一章有理数约4课时

第二周9.14—9.201.3有理数的加减约4课时

第三周9.21—9.271.4有理数的乘除约4课时

第四周9.28—10.111.5有理数的乘方约3课时

第五周10.12—10.18第二章整式的加减2课时

第六周10.19—10.252.2整式的加减约2课时

第七周10.26—11.1第三章一元一次方程约4课时

第八周11.2—11.82.2从古老的代数书说起──一元一次方程的讨论(1)约4课时

第九周11.9—11.152.3从“买布问题”说起──一元一次方程的讨论(2)约4课时

第十周11.16—11.223.4再探实际问题和一元一次方程约4课时

第十一周11.23—11.29复习、期中考试

第十二周11.30—12.6第四章图形的认识初步4.1多姿多彩的图形约4课时

第十三周12.7—12.134.2直线、射线、线段约2课时

第十四周12.14—12.204.3角的度量约3课时

第十五周12.21—12.274.4角的比较与运算约3课时

第十六周12.28—1.3第五章数据的收集与整理约5课时

第十七周1.4—1.104.3课题学习约2课时

第十八、十九、二十周1.11—2.1复习本学期内容

第二十一周2.2—2.6期末考试

初一数学教案 篇7

教学目标

(一)教学知识点

1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。

3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

(二)能力训练要求

1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。

2、通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。

3、通过学生共同观察和讨论,培养大家的合作交流意识。

(三)情感与价值观要求

1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

2、具有初步的创新精神和实践能力。

教学重点

1、体会方程与函数之间的联系。

2、理解何时方程有两个不等的实根,两个相等的实数和没有实根。

3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

教学难点

1、探索方程与函数之间的联系的过程。

2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

教学方法

讨论探索法。

教具准备

投影片二张

第一张:(记作§2.8.1A)

第二张:(记作§2.8.1B)

教学过程

Ⅰ。创设问题情境,引入新课

[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系。当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。

现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。

通过学生的讨论,使学生更清楚以下事实:

(1)分解因式与整式的乘法是一种互逆关系;

(2)分解因式的结果要以积的形式表示;

(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;

(4)必须分解到每个多项式不能再分解为止。

活动5:应用新知

例题学习:

P166例1、例2(略)

在教师的引导下,学生应用提公因式法共同完成例题。

让学生进一步理解提公因式法进行因式分解。

活动6:课堂练习

1.P167练习;

2、看谁连得准

x2-y2 (x+1)2

9-25 x 2 y(x -y)

x 2+2x+1 (3-5 x)(3+5 x)

xy-y2 (x+y)(x-y)

3、下列哪些变形是因式分解,为什么?

(1)(a+3)(a -3)= a 2-9

(2)a 2-4=( a +2)( a -2)

(3)a 2-b2+1=( a +b)( a -b)+1

(4)2πR+2πr=2π(R+r)

学生自主完成练习。

通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

活动7:课堂小结

从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?

学生发言。

通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。

活动8:课后作业

课本P170习题的第1、4大题。

学生自主完成

通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

板书设计(需要一直留在黑板上主板书)

15.4.1提公因式法例题

1、因式分解的定义

2、提公因式法

初一数学教案 篇8

【教学目标】

1、理解同类项、合并同类项的概念。

2、掌握合并同类项法则,会应用该法则及运算律合并多项式的同类项,会应用同类项及合并同类项解决实际问题。

3、感受其中的“数式通性”和类比的数学思想。

【教学重点】

理解同类项的概念;掌握合并同类项法则。

【教学难点】

正确运用法则及运算律合并同类项。

【教学过程】

一、知识链接

1、运用运算律计算下列各题。

①6×20+3×20=②6×(-20)+3×(-20)=

2、口答。

8个人+5个人=8只羊+5只羊=

8个人+5只羊=

[意图:①复习乘法分配律;②感受“同类”。操作流程:幻灯片出示→学生口答(1)→分配律:ab+ac=a(b+c)→口答(2)→解释]

二、探究新知

探究一:一只蜗牛在爬一根竖立的竹竿,每节竹竿是a厘米,第1小时向上爬了6节,第2小时向上爬了2节,问这个蜗牛在竹竿上向上爬了多少厘米?

(1)请列式表示:,你能对上式进行化简计算吗?

(2)说说化简计算的依据。

[意图:联系生活情境,探究新知。操作流程:幻灯片出示→学生独立思考并回答→师生小结方法]

探究二:根据以上式子的运算,化简下列式子。

①100t-252t

②3x2+2x2

②3ab2-4ab2

④2m2n3-5m2n3

(1)上述各多项式的项有什么共同特点?

(2)上述多项式的运算有什么共同特点,有何规律?

[意图:让学生经历动手、观察、猜想、归纳的学习过程,从而探究出新知。操作流程:幻灯片出示→动手计算→回答并解释→观察(交流)→猜想→引导学生归纳新知]

三、例题精炼

例1、合并同类项。

4x2+2x+7+3x-8x2-2

例2、求多项式-x2+4x+5x2-3x-4x2+3的值,其中x=。

[意图:运用知识解决问题,突出重点。操作流程:完成例1(3~4人演排)→学生质疑→师点评并规范格式、注意事项(例2处理方式同上)]

四、课堂小结

这节课你学到了哪些知识?

[意图:养成总结反思的好习惯。操作流程:交流→小组代表发言→师补充]

五、课堂检测(略)

初一第一学期数学教学计划 篇9

一、学生情况分析

本期担任七年级数学,该班共有学生46人。七年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。七年级学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。学生是否掌握良好的记忆方法与其学业成绩的好坏相关,七年级学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应七年级教学的新要求,要重视对学生进行记法指导。

二、教材及课标分析

第一章《有理数》

1、本章的主要内容:

对正、负数的认识;有理数的概念及分类;相反数与绝对值的概念及求法;数轴的概念、画法及其与相反数与绝对值的关系;比较两个有理

数大小的方法;有理数加、减、乘、除、乘方运算法则及相关运算律;科学计数法、近似数、有效数字的概念及求法。

重点:有理数加、减、乘、除、乘方运算

难点:混合运算的运算顺序,对结果符号的确定及对科学计数法、有效数字的理解。

2、本章的地位及作用:

本章的知识是本册教材乃至整个初中数学知识体系的基础,它一方面是算术到代数的过渡,另一方面是学好初中数学及与之相关学科的关键,尤其有理数的运算在整个数学及相关学科中占有极为重要的地位,可以说这一章内容是构建“数学大厦”的地基。

3、本章涉及到的主要数学思想及方法:

a、分类讨论的思想:主要体现在有理数的分类及绝对值一节课的教学中。

b、数形结合的思想:主要体现在数轴一节课的学习上,用数字表示数轴(图形)的形态,反过来用数轴(图形)反映数字的具体意义,达到数字与图形微观与宏观的统一,具体与抽象的结合,即用数说明图形的形象,用图形说明数字的具体,尤其利用数轴比较有理数的大小,理解相反数与绝对值的几何意义,更是形象直观。

c、化归转化的思想:主要体现在有理数的减法转化为有理数的加法,有理数的乘法转化为有理数的除法。

d、类比法:对于有理数加、减、乘、除、乘方运算可类比小学学过的加、减、乘、除、混合运算等内容学习,总的来说计算方法不变,只是把数字的范围扩大了,增加了负数。在学习过程中要时时考虑符号问题。用类比的方法去学习会对新知识有“似曾相识”之感,不会觉得陌生,学起来自然会轻松的多。

4、教法建议(仅供参考)

a、在学完数轴一节课后,把利用数轴比较有理数的大小补充进来,提前讲解,在讲完绝对值后,在利用绝对值比较两个负数的大小,这样做既可以体会到数轴的用途,也可以避免两种方法放在一起给学生造成的混乱,而利用绝对值比较有理数的大小,写法上学生一般情况下掌握不好,这样可以着重训练学生的写法,分散难点。

b、注重联系实际:这本教材的编排更注重了知识来源于生活,反过来又应用到生活中去的思想。充分体现了生活中处处有数学,人人都学有用的数学的理念。因此,在每课的“创设情境”这一环节中,要充分注意这一点,充分利用生活实例引入新知识,使学生充分体现到学好数学是有用的,因而提高学生学习数学的兴趣。

c、对于绝对值一课的教法建议:对于绝对值的代数意义的理解,学生往往感到困难,教者可以告诉学生:两棍中间夹着一个人(整体),当它是正数和零时,两棍一扒拉,直接走出来,当它是负数时,两棍一扒拉,拄着拐棍走出来,比较形象,使学生容易理解,在《整式的加减》一章中,才可以顺利去掉绝对值符号,进行化简。

d、注重本章的选学内容:一个是第6页的“用正负数表示加工允许误差”,另一个是第40页的“翻牌游戏中的数学定到理”

第二章《整式的加减》

1、本章的主要内容:

列代数式,单项式及其有关概念,多项式及其有关概念,去括号法则,整式的加减,合并同类项,求代数式的值。

重点:去括号,合并同类项。

难点:对单项式系数,次数,多项式次数的理解与应用。

2、本章的地位及作用:

整式是简单代数式的一种形式,在日常生活中经常要用整式表示有关的量,体现了变量与常量之间的关系,加深了对数的理解。本章中列代数式,去括号及合并同类项是后面学习一元一次方程的基础,求代数式的值在中考命题中占有重要的地位。

3、本章涉及到的主要数学思想及方法:

a、整体数思想:主要体现在式子的化简求值问题中,有些题目采用整体代人的解题策略,可使计算简便。有些题目只有从整体考虑才能解决问题。例如:已知:a-b=-3,c+d=2,求(b+c)-(a-d)的值

b、从“特殊到一般”,又从“一般到特殊”的数学思想:这主要体现在本章的习题中,都是根据实际问题列出式子,然后再根据具体数值求式子的值中。

c、对比思想:本章出现了单项式,多项式,同类项等概念,为了正确掌握这些概念,可在比较辨析中加深对概念的理解。

4、教法建议(仅供参考)

a、在讲多项式一节的内容中,增加多项式的升(降)幂排列的内容,为下一节对合并同类项的结果的整理提前做好准备。

b、注重本章的数学活动:第43页的数学活动,我认为很有价值,有一定的趣味性,也有较强的探索性,对于学生思维逻辑性的培养是很有价值的,应给予学生充分的时间进行学习。

c、本章概念较多,应使学生首先牢记概念,在解决问题时,才能有意识地联系这些概念,以此为依据完成相关题目。

d、在求多项式的值的相关题目中,注意解题格式的要求,学生初次接触,往往不注意解题格式的写法。

第三章《一元一次方程》

1、本章的主要内容:

列方程,一元一次方程的概念及解法,列一元一次方程解应用题。

重点:列方程,一元一次方程的解法,

难点:解有分母的一元一次方程和应用一元一次方程解决实际问题。

2、本章的地位及作用:

一元一次方程是数学中的主要内容之一,它不仅是学习其它方程的基础,而且是一种重要的数学思想——方程思想,利用方程思想可以使许多实际问题变得直接易懂,体会方程是刻画现实世界的一个有效的数学模型。更深刻地体会数学的应用价值。

3、本章涉及到的主要数学思想及方法:

a、转化思想:主要体现在利用方程的同解原理,将复杂的方程转化为简单的方程,直至求出它的解。

b、整体思想:例如:解方程3/2(3x+1)—1/2(3x+1)=5运用整体思想可以使解题步骤简捷,思路清晰。

c、数学建模思想:它是在对问题深入地思考、分析、抽象的基础上,用数学方法去解决实际问题,建立数学模型。方程是刻画现实世界的一个有效的数学模型。本章中的列方程解应用题就是培养学生的数学建模思想。

d、数形结合思想:这主要体现在列方程解应用题时,尤其是对行程问题的分析解决中。

4、教法建议(仅供参考)

a、本册教材为了更好地体现数学与生活的联系,在讲一元一次方程的解法时,都是先通过一道生活实际问题引入的,然后探讨方程的解法,我的建议是,对于引例的讲解,可以先用算术法,大部分学生习惯这种解法,再引导学生用方程的方法,从而使学生逐步认识到代数方法的优越性。在列出方程后,引导学生探讨完方程的每一步骤后,熟练了应用这一步骤解方程后,在开始下一步骤的学习。

b、注重几种基本题型的应用题:商品利润问题,储蓄问题,行程问题,行船问题,工程问题,调配问题,比例分配问题,数字问题,等积变形问题。这是一些经典题型。同时注意一些图表型应用题,阅读理解型等新颖的应用题。

c、关注教材第95页的实验与探究:无限循环小数化分数,使学生意识到可以利用一元一次方程的知识将无限循环小数化分数,进一步体会方程的应用。

第四章《图形认识初步》

1、本章的主要内容、地位及作用:

本章主要介绍了多姿多彩的图形(立体图形、平面图形),以及最基本的图形——点、线、角等,并在自主探究的过程中,结合丰富的实例,探索“两点确定一条直线”和“两点间线段最短”的性质,认识角以及角的表示方法,角的度量,角的画法,角的比较及余角,补角等,探索了比较线段长短的方法及线段中点。本章中的直线,射线,线段以及角等,都是我们认识复杂图形的基础,因此,本章在初中数学中占有重要的地位。

2、教学重点与难点

教学重点:

(1)角的比较与度量。

(2)余角、补角的概念和性质。

(3)直线、射线、线段和角的概念和性质

教学难点:

(1)用几何语言正确表达概念和性质。

(2)空间观念的建立。

3、本章涉及到的主要数学思想及方法:

a、分类讨论思想:本章经常遇到直线上的点点位置不确定的问题,或者从公共端点出发的一条射线在角内或角外的不确定问题,这时往往需要用分类讨论思想来解决。

b、方程的思想:在涉及线段和角度的计算中,把线段的长度或角的度数设为一个未知数,并根据所求线段或角与与其他线段或角之间的关系列方程求解,能清楚简捷地表示出几何图形中的数量关系,是解决几何计算题的一种重要方法。

c、由特殊到一般的思想:主要体现在依靠图形寻找规律的习题中。

4、教法建议(仅供参考)

a、在讲“几何图形”一节中,注意利用实物和几何模型进行教学,让学生通过认真观察、想象、思考加强对图形的直观认识和感受,从中抽象出几何图形,从而更好地掌握知识。

b、在讲立体图形平面展开图中,我建议最好让学生准备好粉笔盒等其它实物,亲自动手操作,全班集体归纳总结出正方体的11种平面展开图,培养学生的空间想象能力,锻炼学生不用动手折叠,就能通过观察展开图,想象出立体图形的形状的能力。

c、在讲“直线、射线、线段”一节中,注重培养学生依据几何语言画图的能力,注意补充一部分“根据语句画出图形”的习题。

d、在涉及有关线段角的计算题时,大部分学生不是求不出结果,利用小学学的算术方法往往能给出答案。但不能很好地写出解题过程。因此对于这部分内容要逐步训练学生的简单说理能力。

三、进度安排

(略)

初一数学教案设计 篇10

教学目标

1、 理解并掌握等腰三角形的判定定理及推论

2、 能利用其性质与判定证明线段或角的相等关系。

教学重点: 等腰三角形的判定定理及推论的运用

教学难点: 正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系。

教学过程:

一、复习等腰三角形的性质

二、新授:

I提出问题,创设情境

出示投影片。某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度。

学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”。

II引入新课

1、由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗?

作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?

2、引导学生根据图形,写出已知、求证。

2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称)。

强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”。

4、引导学生说出引例中地质专家的测量方法的根据。

III例题与练习

1、如图2

其中△ABC是等腰三角形的是 [ ]

2、①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?)。

②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?)。

③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.

④若已知 AD=4cm,则BC______cm.

3、以问题形式引出推论l______.

4、以问题形式引出推论2______.

例: 如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形。

分析:引导学生根据题意作出图形,写出已知、求证,并分析证明。

练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?

(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?

练习:P53练习1、2、3。

IV课堂小结

1、判定一个三角形是等腰三角形有几种方法?

2、判定一个三角形是等边三角形有几种方法?

3、等腰三角形的性质定理与判定定理有何关系?

4、现在证明线段相等问题,一般应从几方面考虑?

V布置作业:P56页习题12.3第5、6题